Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 244-250    DOI: 10.11902/1005.4537.2019.037
Current Issue | Archive | Adv Search |
Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor
SHAO Minglu1(), LIU Dexin2, ZHU Tongyu2, LIAO Bichao3
1 State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum, Beijing 102249, China
2 School of Petroleum Engineering in China University of Petroleum (East China), Qingdao 266580, China
3 Department of Fracturing Engineering, Zhongyuan Petroleum Engineering Company of Sinopec Group, Puyang 457164, China
Download:  HTML  PDF(1784KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new type of urotropine quaternary ammonium salt as corrosion inhibitor was synthesized through nucleophilic reaction with urotropine and bromohexane as raw materials, while methanol as solvent. Then, the corrosion inhibition effect of quaternary ammonium salt for QT-800 steel in 15% (mass fraction) HCl solution was assessed by mass loss measurements, IR spectrometer and SEM. The mechanism of corrosion inhibition was studied by quantum chemical density functional theory. The results indicated that the quaternary ammonium salt has good corrosion inhibition performance, when urotropine quaternary ammonium salt of 0.5% (mass fraction) was added into 15%HCl solution at 90 ℃, the inhibition efficiency for QT-800 steel could reach up to 98.41%. The complexes of the urotropine quaternary ammonium salt with polyethylene glycol, potassium iodide and propynol were prepared respectively, and they all showed good performance in corrosion inhibition. Quantum chemical parameters indicates that the chemical activity of the urotropine quaternary ammonium salt is mainly distributed on the molecular ring, which has a smaller energy gap than the urotropine, and a larger adsorption energy on the iron surface. Therefore, the reactivity of urotropine quaternary ammonium salt is higher than that of urotropine. The results of IR spectrum and SEM analysis reveal that the urotropine quaternary ammonium salt molecules could adsorb on the surface of QT-800 steel during the corrosion test in HCl solution.

Key words:  synthesis      urotropine      corrosion inhibitor      complex      quantum chemical calculation     
Received:  19 March 2019     
ZTFLH:  TG174.42  
Corresponding Authors:  SHAO Minglu     E-mail:  minglushao@163.com

Cite this article: 

SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 244-250.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.037     OR     https://www.jcscp.org/EN/Y2020/V40/I3/244

Inhibitor dosage / %Urotropine quaternary ammonium saltUrotropine
Corrosion rate g·m-2·h-1, 60 ℃Corrosion rate g·m-2·h-1, 90 ℃Corrosion rate g·m-2·h-1, 60 ℃Corrosion rate g·m-2·h-1, 90 ℃
058.9210236.334658.9210236.3346
0.13.88976.025313.5422112.3919
0.32.53025.356112.2449106.7348
0.51.61183.760610.380498.1144
0.71.07543.68429.445185.9134
1.01.00452.99559.341367.4380
Table 1  Effect of the dosage of the corrosion inhibitor on the corrosion inhibition
Fig.1  Relationship between the mass fraction of surfactant and corrosion rate
Fig.2  Relationship between the mass fraction of synergist and corrosion rate
Serial numberPolyethylene glycol / %KI %Propynol %Corrosion rate g·m-2·h-1
10.0060.10.11.0702
20.0060.150.150.9963
30.0060.20.20.7223
40.0080.10.150.8044
50.0080.150.20.6703
60.0080.20.10.9373
70.010.10.20.7079
80.010.150.10.9565
90.010.20.150.8401
Table 2  Orthogonal Experimental results and analysis
Fig.3  HOMO and LUMO isosurfaces with a value of 0.03 a.u. for urotropine (a, b) and urotropine quaternary amm-onium salts (c, d): (a) EHOMO=-5.621 eV, (b) ELUMO=0.506 eV, (c) EHOMO=-9.495 eV, (d) ELUMO=-3.423 eV
Fig.4  Molecular dynamics simulation of corrosion inhibitor molecules in the balance of Fe surface state diagram: (a) Urotropine, (b) Urotropine quaternary ammonium salt
Fig.5  FT-IR spectrums of QT-800 steel surface after immersion with quaternary ammonium salt corrosion inhibitor, urotropine, and 1-Bromohexane
Fig.6  Surface morphologies of QT-800 steel in 15%HCl without corrosion (a), without inhibitor (b) with inhibitor and polyethylene glycol (c) and with inhibitor and propynol (d)
[1] He X K, Chen B Z, Zhang Q F. Present development and prospect of inhibitor [J]. Mater. Prot., 2003, 36(8): 1
(何新快, 陈白珍, 张钦发. 缓蚀剂的研究现状与展望 [J]. 材料保护, 2003, 36(8): 1)
[2] Li Y T, Wang L Y, Shi D Q, et al. Research progress of imidazoline corrosion inhibitors used in oilfields [J]. Mater. Prot., 2011, 44(12): 50
(李言涛, 王路遥, 史德青等. 油气田用咪唑啉缓蚀剂的研究进展 [J]. 材料保护, 2011, 44(12): 50)
[3] Li Y T, Hou B R. Progress on natural environmental friendly corrosion inhibitors for metals [J]. Corros. Sci. Prot. Technol., 2006, 18: 37
(李言涛, 侯保荣. 天然环保型缓蚀剂近期研究进展 [J]. 腐蚀科学与防护技术, 2006, 18: 37)
[4] Du H Y, Lu M X, Wu Y S, et al. Study of inhibition mechanism of stearamide derivative on CO2 corroded steel X65 [J]. Acta Metall. Sin., 2006, 42: 533
(杜海燕, 路民旭, 吴荫顺等. 脂肪酰胺类缓蚀剂对X65钢抗CO2腐蚀的机理研究 [J]. 金属学报, 2006, 42: 533)
[5] Wang J, Wang X, Zhong Z G, et al. Preparation and property of inhibitor WX1A used for high-density and solid-free well killing fluid [J]. Oilfield Chem., 2016, 33: 407
(王健, 王煦, 钟志刚等. 适用于酸性高密度压井液的缓蚀剂WX1A的制备与性能研究 [J]. 油田化学, 2016, 33: 407)
[6] Li K H, Wu L L. Synthesis of XJ mannich base inhibitor and research of N80 steel corrosion performance [J]. Oilfield Chem., 2013, 30: 434
(李克华, 吴兰兰. 曼尼希碱缓蚀剂XJ合成及其对N80钢的缓蚀性能 [J]. 油田化学, 2013, 30: 434)
[7] Chen D J, Li X K, Xiong Y, et al. Study on anti-H2S thioureido imidazoline corrosion inhibitor [J]. Oilfield Chem., 2014, 31: 107
(陈大钧, 李小可, 熊颖等. 防H2S腐蚀的硫脲基咪唑啉缓蚀剂研究 [J]. 油田化学, 2014, 31: 107)
[8] Zheng Y X, Wang X P, Yan Y F, et al. Synthesis and property evaluation of quinoline diquaternary ammonium salt as acidification corrosion inhibitor [J]. Corros. Prot., 2015, 36: 14
(郑云香, 王向鹏, 燕玉峰等. 喹啉型双季铵盐酸化缓蚀剂的合成与性能评价 [J]. 腐蚀与防护, 2015, 36: 14)
[9] Zhou F, Dai Q Q. Research on synthesis and preparation of imidazolium quaternary corrosion inhibitor for acidification [J]. Adv. Fine Petrochem., 2016, 17(4): 27
(周飞, 戴倩倩. 酸化用咪唑啉季铵盐缓蚀剂的合成与复配研究 [J]. 精细石油化工进展, 2016, 17(4): 27)
[10] Liu F G, Du M. Effect of new type compound inhibitor on inhibition behavior of steel G105 in NaCl solution [J]. Acta Metall. Sin., 2007, 43: 989
(刘福国, 杜敏. 新型复配缓蚀剂对G105钢在NaCl溶液中缓蚀行为的影响 [J]. 金属学报, 2007, 43: 989)
[11] Zhang J, Du M, Yu H H, et al. Effect of molecular structure of imidazoline inhibitors on growth and decay laws of films formed on Q235 steel [J]. Acta Phys.-Chim. Sin., 2009, 25: 525
(张静, 杜敏, 于会华等. 分子结构对咪唑啉缓蚀剂膜在Q235钢表面生长和衰减规律的影响 [J]. 物理化学学报, 2009, 25: 525)
[12] Dong M, Liu L W, Liu Y X, et al. Correlation between molecular structures of inhibitors and their performance in high temperature and high pressure H2S/CO2 environments [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 157
(董猛, 刘烈炜, 刘月学等. 高温高压H2S/CO2环境缓蚀剂分子结构与缓蚀性能关系的研究 [J]. 中国腐蚀与防护学报, 2012, 32: 157)
[13] Wang Y, Hu J, Wang Y Q, et al. A new method for preventing corrosion failure: Thiourea and hexamethylenetetramine as inhibitor for copper [J]. Bull. Korean Chem. Soc., 2016, 37: 1797
doi: 10.1002/bkcs.10978
[14] Gao J L. Urotropine as a corrosion inhibitor in hydrochloric acid solution [J]. Corros. Prot., 2009, 30: 182
(高军林. 乌洛托品作为酸洗缓蚀剂的探讨 [J]. 腐蚀与防护, 2009, 30: 182)
[15] Liu D X, Shao M L, Zhang F, et al. Synthesis and property evaluation of urotropine quaternary ammonium salt as a corrosion inhibitor [J]. Corros. Prot., 2018, 39: 918
(刘德新, 邵明鲁, 张芳等. 乌洛托品季铵盐缓蚀剂的合成与性能评价 [J]. 腐蚀与防护, 2018, 39: 918)
[16] Hu S Q, Jia X L, Hu J C, et al. Quantum chemical analysis on molecular structures and inhibitive properties of imidazoline inhibitors [J]. J. China Univ. Petrol., 2011, 35(1): 146
(胡松青, 贾晓林, 胡建春等. 咪唑啉缓蚀剂分子结构与缓蚀性能的量子化学分析 [J]. 中国石油大学学报 (自然科学版), 2011, 35(1): 146)
[17] Xia S W, Qiu M, Yu L M, et al. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance [J]. Corros. Sci., 2008, 50: 2021
doi: 10.1016/j.corsci.2008.04.021
[18] Zhang J, Yu W Z, Yan Y G, et al. Molecular dynamics simulation of the adsorption behavior of imidazoline corrosion inhibitors on a Fe(001) surface [J]. Acta Phys.-Chim. Sin., 2010, 26: 1385
doi: 10.3866/PKU.WHXB20100501
(张军, 于维钊, 燕友果等. 咪唑啉缓蚀剂在Fe(001) 表面吸附行为的分子动力学模拟 [J]. 物理化学学报, 2010, 26: 1385)
doi: 10.3866/PKU.WHXB20100501
[19] Xu B, Yang W Z, Liu Y, et al. Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Corros. Sci., 2014, 78: 260
[20] He Z L, Tao W G, Jiang X H. Theoretical evaluation of corrosion inhibition performance of N-alkyl pyridinium salt corrosion inhibitors [J]. J. China West Normal Univ. (Nat. Sci.), 2017, 38: 68
(何忠凌, 陶卫国, 蒋晓慧. N-烷基吡啶季铵盐类缓蚀剂缓蚀性能的理论研究 [J]. 西华师范大学学报 (自然科学版), 2017, 38: 68)
[21] Saha S K, Ghosh P, Hens A, et al. Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor [J]. Phys. E, 2015, 66: 332
[22] Zhang J, Hu S Q, Wang Y, et al. Theoretical investigation on inhibition mechanism of 1-(2-Hydroxyethyl) -2-alkyl-imidazoline corrosion inhibitors [J]. Acta Chim. Sin., 2008, 66: 2469
(张军, 胡松青, 王勇等. 1-(2-羟乙基) -2-烷基-咪唑啉缓蚀剂缓蚀机理的理论研究 [J]. 化学学报, 2008, 66: 2469)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[4] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[9] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[10] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[11] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[12] Shaojun ZHENG,Yu WANG,Rui ZHU,Yongdong GU,Dandan YANG,Xingwei CAI. Recent Research Progress of Synthetic Substancesas Antifoulants[J]. 中国腐蚀与防护学报, 2016, 36(5): 389-397.
[13] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[14] Yongli WANG,Li MA,Liangyin XIONG,Shi LIU. Effect of Inclusions on Corrosion and Dissolution of Metallic Ions of Stainless Steel 304 in Simulated Tap Water[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
[15] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
No Suggested Reading articles found!