Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (5): 473-478    DOI: 10.11902/1005.4537.2017.070
Current Issue | Archive | Adv Search |
Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution
Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG()
State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Download:  HTML  PDF(818KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A non-toxic and compound organic-inorganic corrosion inhibitor was prepared with cerium salt, polyphosphate, Zn-salt, borate and organic polymer as raw materials, and then the effect of which on the corrosion of alloy steel L921A in 3.5%(mass fraction) NaCl solution was studied by weight loss measurement in conjunction with orthogonal method. The results show that the corrosion inhibitor was an anodic corrosion inhibitor with inhibition efficiency 97% for alloy steel L921A. The electrochemical impedance spectroscopy (EIS) spectrum of the alloy steel L921A in 3.5%NaCl solution was composed of a high frequency capacitive loop and a low frequency inductive loop with two time-constants, indicating that the alloy steel L921A presented pitting susceptibility in 3.5%NaCl solution. When the corrosion inhibitor was added to the 3.5%NaCl solution, the EIS spectrum of the alloy steel L921A presented only a single capacitive loop with one time-constant. After immersion in 3.5%NaCl solution for 35 h, the electrochemical impedance of the steel increased from 103 Ωcm2 to 1.1×104 Ωcm2. In this case, the coverage of the corrosion inhibitor reached about 80% of the surface of the alloy steel L921A.

Key words:  L921A steel      NaCl solution      orthogonal test      corrosion inhibitor      electrochemical impedance spectroscopy      corrosion mechanism     
Received:  02 May 2017     

Cite this article: 

Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 473-478.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.070     OR     https://www.jcscp.org/EN/Y2017/V37/I5/473

Fig.1  SEM images of L921A steel after corrosion for 35 h in 3.5%NaCl solution without inhibitor (a), with inhibitor (b), and before corrosion (c)
Level A B C D E
1 10 100 50 100 100
2 30 300 100 200 200
3 50 500 150 300 300
4 70 700 200 400 400
Table 1  Orthogonal test with 5 factors and 4 levels (mgL-1)
No. A B C D E Inhibition efficiency / %
1 A1 B1 C1 D1 E1 78.5
2 A1 B2 C2 D2 E2 89.5
3 A1 B3 C3 D3 E3 91.9
4 A1 B4 C4 D4 E4 88.5
5 A2 B1 C2 D3 E4 95.9
6 A2 B2 C1 D4 E3 92.7
7 A2 B3 C4 D1 E2 98.9
8 A2 B4 C3 D2 E1 95.0
9 A3 B1 C3 D4 E2 98.4
10 A3 B2 C4 D3 E1 95.1
11 A3 B3 C1 D2 E4 92.0
12 A3 B4 C2 D1 E3 99.1
13 A4 B1 C4 D2 E3 94.8
14 A4 B2 C3 D1 E4 91.1
15 A4 B3 C2 D4 E1 97.1
16 A4 B4 C1 D3 E2 93.5
I/4(%) 87.1 91.9 89.2 91.9 91.4 ---
II/4(%) 95.6 92.1 95.4 92.8 95.1 ---
III/4(%) 96.1 95.0 94.1 94.1 94.6 ---
IV/4(%) 94.1 94.0 94.3 94.2 91.9 ---
R(%) 9.0 3.1 6.2 2.3 3.7 ---
Table 2  Analysis of orthogonal test results
Factor Sum of square of deviation Degree of freedom F FCritical
A 209.070 3 2.722 5.420
B 26.651 3 0.347 5.420
C 91.789 3 1.195 5.420
D 14.957 3 0.195 5.420
E 41.616 3 0.542 5.420
Error 384.080 15 --- ---
Table 3  Variance analysis of orthogonal test
Fig.2  Variations of corrosion potential of L921A steel with time during immersion in 3.5%NaCl solution with and without inhibitor
Fig.3  Polarization curves of L921A steel after immersion for 35 h in 3.5%NaCl solution with and without inhibitor
Fig.4  Nyquist (a), impendance module (b) and phase angle (c) plots of L921A steel after immersion for 35 h in 3.5%NaCl solution with and without inhibitor
Fig.5  Equivalent circuits of EIS for L921A steel during immersion in 3.5%NaCl solution without (a) and with (b) inhibitor
Condition Rs / Ωcm2 Rt / Ωcm2 L / Hcm2 R0 / Ωcm2 CPE-Y0 / Ssa α
Without inhibitor 6.119 1.60×103 5.63×10-4 2.44×104 4.79×10-4 7.47×10-1
With inhibitor 7.217 2.08×104 --- --- 1.66×10-4 7.26×10-1
Table 4  Equivalent circuit parameters obtained by fitting EIS in Fig.4
Fig.6  Coverage of corrosion inhibitor film as a function of immersion time
[1] Yu H, Wu J H, Qian J H, et al.Study on the inhibition behavior of a new kind corrosion inhibitor in seawater[J]. J. Chin. Soc. Corros. Prot., 2003, 23(5): 40
[1] (于辉, 吴建华, 钱建华 等. 一种海水缓蚀剂缓蚀行为的研究 [J]. 中国腐蚀与防护学报, 2003, 23(5): 40)
[2] Ivu?i? F, Lahodny-?arc O, ?urkovi? H O, et al. Synergistic inhibition of carbon steel coroosion in seawater by cerium chloride and sodium gluconate[J]. Corros. Sci., 2015, 98: 88
[3] S?ylev T A, Richardson M G.Corrosion inhibitors for steel in concrete: State-of-the-art report[J]. Constr. Build. Mater., 2008, 22: 609
[4] Cao C N.Electrochemical Corrosion [M]. Beijing: Chemical Industry Press, 1994
[4] (曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 1994)
[5] Goldie B P F, Mccarroll J J. Method of inhibiting metal corrosion in aqueous systems [P]. EP, EP 0136860A2, 1985
[6] Yadav M, Behera D, Sharma U.Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid[J]. Arab. J. Chem., 2016, 9: S1487
[7] Lin Y Z.Corrosion and Corrosion Control Principle [M]. Beijing: Sinopec Press, 2007
[7] (林玉珍. 腐蚀和腐蚀控制原理 [M]. 北京: 中国石化出版社, 2007)
[8] Gaupp R H, Nygren Jr J A. Corrosion inhibitor [P]. US, US3992318 A, 1976
[9] Lin H C.Progress in research of inhibitors[J]. Corros. Sci. Prot. Technol., 1997, 9: 308
[9] (林海潮. 缓蚀剂研究的进展[J]. 腐蚀科学与防护技术, 1997, 9: 308)
[10] Lin Y T, Hou B R.Progress on natural environmental friendly corrosion inhibitors for metals[J]. Corros. Sci. Prot. Technol., 2006, 18: 37
[10] (李言涛, 侯保荣. 天然环保型缓蚀剂近期研究进展[J]. 腐蚀科学与防护技术, 2006, 18: 37)
[11] Yu G J, Tang B.Electrochemical methods of inhibitor research[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 76
[11] (余国骏, 汤兵. 缓蚀剂研究中的电化学方法[J]. 中国腐蚀与防护学报, 2009, 29: 76)
[12] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002: 86
[12] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 86
[13] Zhang J T, Hu J M, Zhang J Q, et al.Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS[J]. Prog. Org. Coat., 2004, 51: 145
[14] Orazem M E, Tribollet B.Electrochemical Impedance Spectroscopy[M]. Hoboken: John Wiley & Sons, Inc., 2008
[15] Brug G J, van den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element[J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 176: 275
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[8] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[11] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[12] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[13] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[15] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
No Suggested Reading articles found!