Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 415-420    DOI: 10.11902/1005.4537.2015.214
Orginal Article Current Issue | Archive | Adv Search |
Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors
Xiang ZUO1,2(),Yufeng JIANG1,Ting CHI1,Xin HU1,Dongmei CAO1,Feng CAI2
1. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing 210019, China
2. College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, China
Download:  HTML  PDF(791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of new corrosion inhibitors named 1-(2'-alkylsulfanylacetyl)-benzotriazole derivatives were synthesized by alkyl sulfhydryls of different lengths, sodium chloroacetate and benzotriazole. The corrosion inhibition effect of benzotriazole derivatives on copper was evaluated in 3.5%NaCl solution by means of weight loss and electrochemical testing methods, while the adsorption pattern of corrosion inhibitor molecules on the surface of copper was studied. The results show that the benzotriazole derivatives act as mixed type inhibitors with anode inhibition as dominative action. The adsorption of corrosion inhibitor molecules on copper surface obey Langmuir adsorption isotherm, including both physical and chemical adsorption. The synthesized benzotriazole derivatives possess high corrosion inhibition efficiency and excellent temperature resistance.

Key words:  1-(2'-alkylsulfanylacetyl)-benzotriazole      copper      corrosion inhibitor      anode inhibition      Langmuir adsorption isotherm     

Cite this article: 

Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 415-420.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.214     OR     https://www.jcscp.org/EN/Y2016/V36/I5/415

Fig.1  Corrosion rate of copper immersed in 3.5%NaCl solutions (a) and corrosion inhibition efficiency of inhibitors (b)at different temperatures
Corrosion inhibitor 20 mgkg-1 50 mgkg-1 100 mgkg-1 150 mgkg-1
CR / mgcm-2h-1 IE / % CR / mgcm-2h-1 IE / % CR / mgcm-2h-1 IE / % CR / mgcm-2h-1 IE / %
Blank 69.3 --- --- --- --- --- --- ---
A1 24.8 64.2 11.4 83.6 10.1 85.4 8.3 88.0
A2 23.8 65.7 10.7 84.5 5.1 92.7 3.7 94.6
A3 33.1 52.3 22.0 68.2 15.9 77.0 16.8 75.8
A4 35.6 48.7 24.8 64.2 17.7 74.4 18.7 73.0
B1 42.6 38.5 29.6 57.3 21.5 69.0 18.5 73.3
B2 41.5 40.1 27.9 59.8 18.4 73.4 15.9 77.1
Table 1  Mass loss results of copper immersed in 3.5%NaCl solutions with different concentrations of corrosioninhibitors
Corrosion inhibitor 104 Kads Gads / kJmol-1
A1 4.17 -36.31
A2 3.57 -35.92
A3 3.45 -35.84
A4 3.22 -35.67
B1 1.06 -32.91
B2 1.19 -33.20
Table 2  Fitting parameters of Langmuir adsorptionisotherms for corrosion inhibitors
Fig.2  Fitting lines of Langmuir adsorption isotherms forcorrosion inhibitors at 25 ℃
Fig.3  Polarization curves of copper in 3.5%NaCl solutions with different concentrations of corrosion inhibitor A2
Concentration mgkg-1 EcorrV βc
mVdec-1
βa
mVdec-1
Icorr
μAcm-2
IE%
Blank -0.228 228 34 7.73 ---
20 -0.209 265 49 2.26 70.8
50 -0.193 261 56 0.99 87.2
100 -0.185 287 68 0.48 93.8
150 -0.179 306 66 0.46 94.1
Table 3  Polarization parameters of copper in 3.5%NaCl solutions with different concentrations of corrosion inhibitor A2
Fig.4  Nyquist diagrams for copper in 3.5%NaCl solutions with different concentrations of corrosion inhibitor A2
Concentrationmgkg-1 RsΩcm2 RctΩcm2 CdlμFcm2 IE%
Blank 8.1 449.3 77.2 ---
20 11.2 1552.4 43.4 71.1
50 9.4 4275.2 37.5 89.5
100 8.6 6903.5 23.0 93.5
150 10.3 8977.0 28.1 95.0
Table 4  Impedance data of copper in 3.5%NaCl solutionswith different concentrations of corrosion inhibitor A2
Fig.5  Equivalent circuit model used to fit the EISexperimental data
[1] Qi D M, Ceng R Y, Du X Q, et al.Review on atmospheric corrosion of copper and copper alloys[J]. J. Chin. Soc. Corros. Prot., 2014, 34(5): 389
[1] (齐东梅, 成若义, 杜小青等. Cu及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2014, 34(5): 389)
[2] Zhuang L H, Lv Z B, Tian Y W, et al.Present situation on research of corrosion inhibition technology for copper and its alloys[J]. Corros. Sci. Prot. Technol., 2005, 17(6): 418
[2] (庄丽宏, 吕振波, 田彦文等. 铜腐蚀及其缓蚀技术应用研究现状[J]. 腐蚀科学与防护技术, 2005, 17(6): 418)
[3] Dugdale I, Cotton J B.An electrochemical investigation on the prevention of staining of copper by benzotriazole[J]. Corros. Sci., 1963, 3(2): 69
[4] Hashemia T, Hogarth C A.The mechanism of corrosion inhibition of copper in NaCl solution by benzotriazole studied by electron spectroscopy[J]. Electrochim. Acta, 1988, 33(8): 1123
[5] Wu Y X, Liu M J, He G Q, et al.Synthesis of some carbonyl derivatives of BTA and determination of their inhibitive properties for copper in 3%NaCl solution[J]. Corros. Sci. Prot. Technol., 1997, 9(3): 201
[5] (吴永炘, 刘呜江, 何国强等. BTA酰基衍生物的合成及对Cu在3%NaCl水溶液中缓蚀性能的研究[J]. 腐蚀科学与防护技术, 1997, 9(3): 201
[6] Fleischmann M, Hill I R, Mengoli G, et al.A comparative study of the efficiency of some organic inhibitors for the corrosion of copper in aqueous chloride media using electrochemical and surface enhanced Raman scattering techniques[J]. Electrochim. Acta, 1985, 30(7): 879
[7] Kunitsugu A, Takehiro K, Takashi S.Surface enhanced Raman scattering and impedance studies on the inhibition of copper corrosion in sulfate solution 5-substituted benzotriazole[J]. Corros. Sci., 1991, 32(5/6): 593
[8] Raicheva S N, Aleksiev B V, Sokolova E I.The effect of the chemical- structure of some nitrogen-containing and sulfur-containing organic-compounds on their corrosion inhibiting action[J]. Corros. Sci., 1993, 34(2): 343
[9] El Sayed H, El Ashry, Ahmed E N, et al.QSAR of benzimidazole and 2-substituted derivatives as corrosion inhibitors by using the quantum chemical parameters[J]. Prog. Org. Coat., 2008, 61(1): 11
[10] Xiao X S, Yen P T, Simo O P.Evaluation of an organic corrosion inhibitor on abiotic corrosion and microbiologically influenced corrosion of mild steel[J]. Ind. Eng. Chem. Res., 2007, 46(22): 7117
[11] Obot I B, Obi-Egbedi N O. Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inibitors[J]. Corros. Sci., 2010, 52(2): 657
[12] Zhang T L, Cao S R, Dai S S, et al.Corrosion inhibition performance and mechanism of (1-tetradecyl-1H-[1,2,3]triazol-4-yl)-methanol[J]. Corros. Sci. Prot. Technol., 2014, 26(4): 329
[12] (张太亮, 曹舒然, 戴珊珊等. 1-十四烷基-4-羟甲基-1,2,3-三唑盐酸缓蚀剂的性能及机理研究[J]. 腐蚀科学与防护技术, 2014, 26(4): 329)
[13] Zhang T L, Cao S R, Quan H P, et al.Synthesis and corrosion inhibition performance of alkyl triazole derivatives[J]. Res. Chem. Intermed., 2015, 41(5): 2709
[14] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-l, 3,4- thiadiazole on mild steel in hydrochloric acid media [J]. Colloids Surf., 2008, 312(1)A: 7
[15] Tang Y M, Yang X Y, Yang W Z, et al.A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5- (n-pyridyl)-1,3,4-thiadiazole: Polarization, EIS and molecular dynamics simulations[J]. Corros. Sci., 2010, 52(5): 1801
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] WANG Shuai,LIU Xinkuan,LIU Ping,CHEN Xiaohong,LI Wei,MA Fengcang,HE Daihua,ZHANG Ke. Effect of Sn and Al on Corrosion Resistance of Ni-free White Copper Alloy[J]. 中国腐蚀与防护学报, 2020, 40(1): 45-50.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[11] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] Na GUO, Yanhua LEI, Tao LIU, Xueting CHANG, Yansheng YIN. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[14] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
No Suggested Reading articles found!