Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 131-138    DOI: 10.11902/1005.4537.2019.236
Current Issue | Archive | Adv Search |
Inhibition for Zn Corrosion by Starch Grafted Copolymer
WANG Yating1, WANG Kexu1, GAO Pengxiang1, LIU Ran1, ZHAO Dishun1(), ZHAI Jianhua1, QU Guanwei2
1.College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050000, China
2.Hebei Aohuan Adhesive Products Co. , Ltd. , Baoding 071000, China
Download:  HTML  PDF(3395KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Starch grafted copolymer (St-g-PAM) was prepared by grafting acrylamide monomer onto starch with ammonium persulfate sodium bisulfite as initiator, which can be used as a new "green" inhibitor. Then the inhibition effect of St-g-PAM on Zn in 1.0 mol/L HCl solution was studied by mass loss method and electrochemical techniques. The results show that St-g-PAM is a mixed inhibitor with good inhibition effect for Zn corrosion in HCl solution, while the inhibition efficiency increases with the increase of St-g-PAM concentration. However, the inhibition efficiency increases slowly when the St-g-PAM concentration exceeds 50 mg/L. At 20~50 ℃, the adsorption process of St-g-PAM on Zn sheet is consistent with Langmuir adsorption model. According to the results of potentiodynamic polarization and EIS measurements, the inhibition ability of St-g-PAM for Zn corrosion in HCl solution in the presence of St-g-PAM can be expressed in both of the decreased corrosion current density and increased charge transfer resistance values.

Key words:  starch graft copolymer      zinc      corrosion inhibitor      corrosion inhibition mechanism     
Received:  18 November 2019     
ZTFLH:  TG174.42  
Fund: National Natural Science and Foundation of China(20576026);Shijiazhuang City Science and;Technology Research and Development Plan(161070251A)
Corresponding Authors:  ZHAO Dishun     E-mail:  zhao_dsh@hebust.edu.cn

Cite this article: 

WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 131-138.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.236     OR     https://www.jcscp.org/EN/Y2021/V41/I1/131

Fig.1  IR spectra of St-g-PAM
c / mg·L-120 / ℃30 / ℃40 / ℃50 / ℃
065.6071.1184.3395.25
1015.0519.2525.8534.05
209.6414.7321.3527.71
306.6210.1515.8219.75
404.867.4411.1415.63
502.854.816.639.85
602.584.276.279.51
702.173.995.898.73
801.773.465.167.73
Table 1  Corrosion rates of zinc in 1.0 mol/L HCl solutions with different concentrations of St-g-PAM at different temperatures (g·m-2·h-1)
Fig.2  Variations of inhibition efficiency with mass concen-tration of St-g-PAM
Fig.3  Polarization curves of zinc in 1.0 mol/L HCl solutions with different concentrations of St-g-PAM

c

mg·L-1

Ecorr

V

Icorr

μA·cm-2

-bc

V·dec-1

ba

V·dec-1

η

%

0-0.74112.5902.9255.365---
10-0.7312.5645.5858.33579.63
20-0.7282.0614.3857.18583.63
30-0.7251.6143.6505.19087.18
40-0.7231.4453.0894.95888.52
50-0.7220.9924.2156.07592.16
Table 2  Polarization curve parameters of zinc in 1.0 mol/L HCl solutions with different concentrations of St-g-PAM
Fig.4  Nyquist plots of zinc in 1.0 mol/L HCl solutions with different concentrations of St-g-PAM

c

mg·L-1

Rs

Ω·cm2

Rct

Ω·cm2

a

Cdl

μF·cm-2

η

%

02.57465.090.9165142.56---
102.421246.60.8921108.6073.61
201.823361.20.921285.4081.98
303.854520.60.861874.7287.50
402.094679.70.906767.3090.42
502.248834.50.918355.6192.20
Table 3  Impedance parameters of zinc in 1.0 mol/L HCl solutions with different concentrations of St-g-PAM
Fig.5  Equivalent circuit diagram for fitting electrochemical impedance spectroscopy
Fig.6  Langmuir adsorption isotherms of St-g-PAM on zinc: (a) mass loss data at 20~50 ℃, (b) electroche-mical data at 20 ℃
Experimental methodTemperature ℃R2slopeInterceptKL·mg-1
Mass loss200.9990.983.560.28
300.9970.994.660.21
400.9910.996.000.17
500.9911.007.030.14
Polarization curve200.9981.042.670.37
EIS200.9991.013.810.26
Table 4  Linear regression parameters of c/θ-ccurves
Fig.7  InK-1/T curve for the adsorption of St-g-PAM on Zn
Temperature / ℃ΔG0 / kJ·mol-1ΔH0 / kJ·mol-1ΔS0 / kJ·mol-1
20-30.58-18.0742.68
30-30.94-18.0742.46
40-31.30-18.0742.25
50-31.88-18.0742.73
Table 5  Adsorption thermodynamic parameters of St-g-PAM on zinc
Fig.8  lnν-1/T curves for the adsorption of St-g-PAM on Zn
c / mg·L-1R2SlopeEa / kJ·mol-1
00.9974-1207.3310.04
100.9906-2579.4921.45
200.9930-3347.3927.83
300.9981-3504.2829.13
400.9989-3682.2030.61
500.9951-3817.9731.74
600.9951-4045.3933.63
700.9909-4121.0834.35
800.9912-4256.5135.39
Table 6  Corrosion kinetic parameters obtained by fitting lnν-1/T straight lines
Fig.9  Relations between ln (ν/T) and 1/T for the adsorp-tion of St-g-PAM on Zn surface
c / mg·L-1R2ΔH / kJ·mol-1ΔS / J·mol-1·K-1
00.99527.57-184.35
100.993719.09-157.48
200.989625.36-139.21
300.997426.73-137.63
400.998928.21-135.33
500.988829.30-132.55
600.990731.22-130.28
700.991532.14-127.71
800.989133.54-126.33
Table 7  Corrosion kinetic parameters obtained by fitting ln (ν/T)-1/T straight lines
Fig.10  SEM (a, c) and AFM (b, d) images of zinc immersed in 1.0 mol/L HCl solutions at 20 ℃ for 2 h without (a, b) and with (c, d) 50 mg/L inhibitor
1 Abdallah M, Ahmed S A, Altass H M, et al. Competent inhibitor for the corrosion of zinc in hydrochloric acid based on 2,6-bis-[1-(2-phenylhydrazono) ethyl] pyridine [J]. Chem. Eng. Commun., 2019, 206: 137
2 Ren T G, Su H S, Liu Y, et al. Research progress of metal corrosion inhibitors [J]. Chem. Res., 2018, 29: 331
任铁钢, 苏慧双, 刘月等. 金属缓蚀剂的研究进展 [J]. 化学研究, 2018, 29: 331
3 Shi H, Shi J, Tang J J, et al. Corrosion inhibition of cetyltrimethyl ammonium bromide for zinc in hydrochloric acid solution [J]. Clean. World, 2012, 28(10): 22
史慧, 史静, 唐俊杰等. 十六烷基三甲基溴化铵在盐酸介质中对锌的缓蚀作用 [J]. 清洗世界, 2012, 28(10): 22
4 Wang X, Ren S F, Jiang H, et al. Preparation method and research direction of plant corrosion inhibitors [J]. Surf. Technol., 2018, 47(3): 196
王霞, 任帅飞, 蒋欢等. 植物缓蚀剂的制备方法与研究方向 [J]. 表面技术, 2018, 47(3): 196
5 Abiola O K, James A O. The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution [J]. Corros. Sci., 2010, 52: 661
6 Liang M, Zhou H B, Huang Q M, et al. Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries [J]. J. Appl. Electrochem., 2011, 41: 991
7 Deyab M A. Hydroxyethyl cellulose as efficient organic inhibitor of zinc-carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies [J]. J. Power Sources, 2015, 280: 190
8 Du Q, Wei H, Li A M, et al. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater [J]. Sci. Total Environ., 2017, 601/602: 1628
9 Fu H, Li X H, Li Y X, et al. Corrosion inhibition of cassava starch graft acryl amide copolymer for cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 265
付惠, 李向红, 李云仙等. 木薯淀粉接枝共聚物在盐酸介质中对冷轧钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2011, 31: 265
10 Li X H, Fu H, Li Y X, et al. Corrosion inhibition of cassava starch graft copolymer for Al in HCl solution [J]. Corros. Sci. Prot. Technol., 2016, 28: 525
李向红, 付惠, 李云仙等. 木薯淀粉接枝共聚物在HCl溶液中对Al的缓蚀性能研究 [J]. 腐蚀科学与防护技术, 2016, 28: 525
11 Li X H, Deng S D, Lin T, et al. Cassava starch-sodium allylsulfonate-acryl amide graft copolymer as an effective inhibitor of aluminum corrosion in HCl solution [J]. J. Taiwan Inst. Chem. Eng., 2018, 86: 252
12 Liu J, Zhao D S, Li J J, et al. Inhibition performance of Gemini surfactant for znic in acid medium [J]. Corros. Prot., 2016, 37: 983
刘静, 赵地顺, 李静静等. 酸性溶液中双子表面活性剂对金属锌的缓蚀性能 [J]. 腐蚀与防护, 2016, 37: 983
13 Jia Z, Dai C S, Chen L. Electrochemical Measurement Method [M]. Beijing: Chemical Industry Press, 2006
贾铮, 戴长松, 陈玲. 电化学测量方法 [M]. 北京: 化学工业出版社, 2006
14 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
15 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemistry Industry Press, 2008
曹楚南. 腐蚀电化学原理 [M]. 第三版. 北京: 化学工业出版社, 2008
16 Negm N A, Al Sabagh A M, Migahed M A, et al. Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution [J]. Corros. Sci., 2010, 52: 2122
17 Negm N A, Kandile N G, Badr E A, et al. Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl [J]. Corros. Sci., 2012, 65: 94
18 Poornima T, Nayak J, Shetty A N. Effect of 4- (N,N-diethylamino) benzaldehyde thiosemicarbazone on the corrosion of aged 18 Ni 250 grade maraging steel in phosphoric acid solution [J]. Corros. Sci., 2011, 53: 3688
19 Lebrini M, Lagrenée M, Vezin H, et al. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds [J]. Corros. Sci., 2007, 49: 2254
20 Hanza A P, Naderi R, Kowsari E, et al. Corrosion behavior of mild steel in H2SO4 solution with 1,4-di [1′-methylene-3′-methyl imidazolium bromide]-benzene as an ionic liquid [J]. Corros. Sci., 2016, 107: 96
21 Musa A Y, Kadhum A A H, Mohamad A B, et al. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol [J]. Corros. Sci., 2010, 52: 526
22 Qiang Y J, Zhang S T, Guo L, et al. Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26%NH4Cl solution [J]. J. Clean. Prod., 2017, 152: 17
23 Wang X M, Yang H Y, Wang F H. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions [J]. Corros. Sci., 2010, 52: 1268
24 Hegazy M A, El-Tabei A S, Bedair A H, et al. An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4 [J]. Corros. Sci., 2012, 54: 219
25 Ali S M, Al Lehaibi H A. Control of zinc corrosion in acidic media: Green fenugreek inhibitor [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3034
26 Satapathy A K, Gunasekaran G, Sahoo S C, et al. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution [J]. Corros. Sci., 2009, 51: 2848
[1] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[2] WANG Lizi, HUANG Miao, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[3] MA Qi, CAI Jingshun, MU Song, ZHOU Xiaocheng, LIU Kai, LIU Jianzhong, LIU Jiaping. Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen[J]. 中国腐蚀与防护学报, 2021, 41(5): 659-666.
[4] MA Shide, LIU Xin, WANG Zaidong, REN Yadong, TAI Yu, HAN Wen, DUAN Jizhou. Characterization of Seawater Corrosion Interface of Zinc Coated Steel Plate in Zhong-gang Harbor[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[5] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[6] TAN Bochuan, ZHANG Shengtao, LI Wenpo, XIANG Bin, QIANG Yujie. Food Spices 2,5-Dihydroxy-1,4-dithiane as an Eco-friendly Corrosion Inhibitor for X70 Steel in 0.5 mol/L H2SO4 Solution[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[9] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[10] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[11] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[12] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[13] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[14] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[15] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[1] Tianyuan Luo. ATMOSPHERIC CORROSION AND STRESS CORROSION FOR URANIUM ALLOY[J]. J Chin Soc Corr Pro, 2004, 24(2): 112 -115 .