Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 415-422    DOI: 10.11902/1005.4537.2014.188
Current Issue | Archive | Adv Search |
Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid
Tiejun SU1(),Yunbai LUO2,Kehua LI3,Fanxiu LI3,Shiying DENG1,Wei XI1
1. College of Technology and Engineering, Yangtze University, Jingzhou 434020, China
2. College of Chemistry and Molecule Science, Wuhan University, Wuhan 430072, China
3. College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
Download:  HTML  PDF(2412KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inhibition performance of two compounds of benzimidazole N-mannich base namely PAB and PPB for N80 steel in HCl solution was investigated by means of weight loss test, potentiodynamic polarization and electrochemical impedance spectroscopy. The results showed that both PAB and PPB were mixed-type inhibitor, and were adsorbed on the surface of mild steel spontaneously; whilst PPB has higher inhibition efficiency than that of PAB, which accorded well with theoretical prediction. Furthermore,the adsorption of both PAB and PPB follows Langmuir isotherm law.

Key words:  benzimidazol derivative      corrosion inhibitor      electrochemical measurement      quantum chemistry calculation      molecular dynamics simulation     
ZTFLH:     
Fund:  

Cite this article: 

Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 415-422.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.188     OR     https://www.jcscp.org/EN/Y2015/V35/I5/415

Fig.1  Molecular structures of inhibitors PAB (a) and PPB (b)
Molecule Tmp / ℃ νN-H / cm-1 νC-N / cm-1 νC=N / cm-1 νC=C / cm-1
PAB 144~146 (147~148)[17] 3422.2 1199.5 1574.4 ---
PPB 86~89 3414.2 1193.0 1592.6 1627.4
Table 1  Melting point and IR data for two compounds used as inhibitor
cinh / mmolL-1 PAB PPB
v / gm-2h-1 η / % v / gm-2h-1 η / %
Blank 24.890 --- 24.920 ---
0.05 12.970 47.9 1.371 94.5
0.10 8.761 64.8 0.598 97.6
0.15 5.949 76.1 0.449 98.5
0.20 4.331 82.6 0.249 99.0
Table 2  Mass losses of N80 steel after corrosion in HCl solutions with different contents of inhibitors
Fig.2  Polarization curves of N80 steel in 15%HCl solution without and with various concentrations of PAB (a) and PPB (b)
cinh mmolL-1 PAB PPB
Ecorr mv Icorr μAcm-2 ba mVdec bc mVdec fa fc Ecorr mv Icorr μAcm-2 ba mVdec bc mVdec fa fc
Blank -420 771.5 119.8 214.2 --- --- -420 771.5 119.8 214.2 --- ---
0.05 -415 435.0 102.8 192.9 0.50 0.59 -407 132.4 85.3 160.2 0.12 0.21
0.10 -412 292.7 79.3 210.0 0.30 0.41 -410 81.7 82.9 156.4 0.08 0.12
0.15 -412 232.4 112.0 187.8 0.26 0.33 -410 64.9 96.9 137.2 0.07 0.10
0.20 -402 177.7 91.4 179.2 0.15 0.29 -410 52.9 86.1 138.3 0.05 0.08
Table 3  Polarization parameters of N80 steel in 15%HCl solution without and with various concentrations of inhibitors at 30 ℃
Fig.3  Nyquist plots of N80 steel in 15%HCl solutions without and with various concentrations of PAB (a) and PPB (b)
Fig.4  Equivalent circuit
cinh mmolL-1 PAB PPB
Rs / Ωcm2 CPE-T / Ω-1cm-2s-n n Rp / Ωcm2 Rs / Ωcm2 CPE-T / Ω-1cm-2s-n n Rp / Ωcm2
Blank 0.689 145.6 0.78 28.2 0.689 145.63 0.78 28.2
0.05 0.641 101.5 0.78 56.7 0.963 94.04 0.79 167.6
0.10 0.694 86.35 0.75 85.1 1.029 80.11 0.80 241.5
0.15 0.976 85.44 0.81 114.9 1.147 71.51 0.80 313.1
0.20 0.600 79.89 0.80 151.5 1.035 71.25 0.82 387.4
  
Fig.5  Langmuir isotherm adsorptions of PAB and PPB
Molecule Slope R2 Kads Lmol-1 ΔG θads kJmol-1
PAB 0.912 0.9990 1.653×105 -40.39
PPB 0.995 0.9999 3.195×106 -47.85
Table 5  Thermodynamic parameters of adsorptions of PAB and PPB on N80 steel
Fig.6  HOMO (a, b) and LUMO (c, d) of PAB (a, c) and PPB (b, d) moleculars
Molecule EHOMO / eV ELUMO / eV ΔE1 / eV ΔE2 / eV ΔE3 / eV
PAB -9.998 -1.249 8.749 6.551 9.748
PPB -9.708 -2.697 7.011 5.103 9.458
Fe -7.800 -0.250 --- --- ---
Table 6  Frontier orbital energies of PAB, PPB and Fe
Fig.7  Equilibrium adsorption configurations of inhibitors PAB (a) and PPB (b) on Fe (001) planes
Molecule Etotal / kJmol-1 Esurface / kJmol-1 Emolecule / kJmol-1 Eadsorption / kJmol-1
PAB -7.708×105 -7.708×105 72.84 -108.73
PPB -7.710×105 -7.708×105 400.97 -663.47
H2O -7.708×105 -7.708×105 7.23 -25.62
Table 7  Adsorption energies of Fe (001) and inhibitor moleculars
[1] Zhao F L. Oilfield Chemistry[M]. Dongying: Press of China University of Petroleum, 2000 (赵福麟. 油田化学[M]. 东营: 中国石油大学出版社, 2000)
[2] Zhang T S,Zhang H,Gao H,et al. Corrosion Inhibitor[M]. Beijing: Chemical Industry Press, 2008 (张天胜,张浩,高红等. 缓蚀剂[M]. 北京: 化学工业出版社, 2008)
[3] Wang H L, Xin J, Yuan C Z. Thermodynamics of the inhibiting process of Mannich bases on A3 carbon steel in hydrochloric acid[J]. J. Chin. Soc. Corros. Prot., 2001, 21(2): 125 (王慧龙, 辛剑, 袁成钟. 盐酸介质中Mannich碱缓蚀剂在碳钢表面的吸附热力学研究[J]. 中国腐蚀与防护学报, 2001, 21(2): 125)
[4] Dong M,Liu L W,Liu Y X,et al. Correlation between molecular structures of inhibitors and their performance in high temperature and high pressure H2S/CO2 environments [J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 157 (董猛, 刘烈炜, 刘月学等. 高温高压H2S/CO2环境缓蚀剂分子结构与缓蚀性能关系的研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 157)
[5] Ahamad I, Prasad R, Quraishi M A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media[J]. Corros. Sci., 2010, 52: 1472
[6] Li K H, Wu L L. Synthesis of XJ Mannich base inhibitor and research of N80 steel corrosion performance[J]. Oilfield Chem., 2013, 30(3): 434 (李克华, 吴兰兰. 曼尼希碱缓蚀剂XJ合成及其对N80钢的缓蚀性能[J]. 油田化学, 2013, 30(3): 434)
[7] Zuo S R, Liu R Q. Corrosion inhibition actions of bis-benzotriazole Mannich alkali compounds for copper in 5%NaHCO3 solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(2): 105 (左书瑞, 刘瑞泉. 双苯并三唑Mannich碱在5%NaHCO3溶液中对Cu的缓蚀作用[J]. 中国腐蚀与防护学报, 2011, 31(2): 105)
[8] Li Y, Ma H Q, Wang Y L. Progress in the synthesis and application of benzimidazoles and their derivatives[J]. Chin J. Org. Chem., 2008, 28(2): 210 (李焱, 马会强, 王玉炉. 苯并咪唑及其衍生物合成与应用研究进展[J]. 有机化学, 2008, 28(2): 210)
[9] Popova A, Sokolova E, Raicheva S. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Corros. Sci., 2003, 45: 33
[10] Hu S Q, Hu J C, Yu J H, et al. Studies on corrosion inhibition of benzimidazole and its derivatives[J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 354 (胡松青, 胡建春, 郁金华等. 苯并咪唑及其衍生物定量构效关系研究[J]. 中国腐蚀与防护学报, 2010, 30(5): 354)
[11] Li X X, Yang W Z. Inhibition of 1-propyl-2-methyl-3-alkyl benzimidazole on Q235 steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 168 (李相旭, 杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2012, 32(2):168)
[12] Zhang F, Tang Y M, Cao Z Y. Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl) -benzimidazole for mild steel in hydrochloric acid[J]. Corros. Sci., 2012, 54: 1
[13] Hu L Y, Zhang S T, Huang X H, et al. Corrosion inhibition of 6-Nitrobenzimidazole in KOH solution for Zinc[J]. J. Chin. Soc. Corros. Prot., 2012, 32(3): 267 (胡莲跃, 张胜涛, 黄小红等. 6-硝基苯并咪唑在KOH溶液中对锌的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(3): 267)
[14] Li J L, Liang C H, Huang N B, et al. Progress on research of benzimidazole derivative as corrosion inhibitor[J]. Corros. Sci. Prot. Technol., 2011, 23(2): 191 (李杰兰, 梁成浩, 黄乃宝等. 苯并咪唑衍生物缓蚀剂研究进展[J]. 腐蚀科学与防护技术, 2011, 23(2): 191)
[15] Xiao J, Wu Y R. The preparation of N-Mannich bases and its exchange reaction with arylketones[J]. J. Beijing Normal Univ., 1996, 32(3): 367 (肖军, 吴永仁. N-Mannich碱的制备及其与芳香酮的交换反应[J]. 北京师范大学学报, 1996, 32(3): 367)
[16] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing:Chemical Industry Press, 2004 (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)
[17] Bei F L, Chen H Q, Yang X J, et al. Synthesis, crystal structure and quantum chemical calculation of benzimidazole derivatives[J]. Chin. J. Orga. Chem., 2004, 24(3): 300 (卑凤利, 陈海群, 杨绪杰等. 苯并咪唑衍生物的合成晶体结构及量子化学计算[J]. 有机化学, 2004, 24(3): 300)
[18] Xu X J, Chen G X. Exchange reaction between acetophenone and benzimidazole N-Mannich base[J]. Acta Chim. Sin., 1982, 40(4): 362 (徐秀娟, 陈光旭. 苯并咪唑-N-Mannich碱与苯乙酮的交换反应[J]. 化学学报, 1982, 40(4): 362)
[19] Zhang S T, Tao Z H, Li W H, et al. A corrosion inhibition of mild steel by novel triazole compound in 1 mol/L HCl solution[J]. J.Chin. Soc. Corros. Prot., 2009, 29(6): 487 (张胜涛, 陶志华, 李伟华等. 新型三氮唑化合物在1 mol/L HCl中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2009, 29(6):487)
[20] Wang X, Yang H, Wang F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in 1 mol/L HCl solution[J]. Corros. Sci., 2009, 51(5): 1836
[21] Song W W, Zhang J, Du M. Inhibition performance of novel dissymmetric bisquaternary ammonium salt to Q235 steel in hydrochloric acid[J]. Acta Chim. Sin., 2011, 69(16): 1851 (宋伟伟, 张静, 杜敏. 新型不对称双季铵盐缓蚀剂在HCl中对Q235钢的缓蚀行为[J]. 化学学报, 2011, 69(16): 1851)
[22] Hu Y. Physical Chemistry[M]. Beijing: High Education Press, 2007 (胡英. 物理化学[M]. 北京: 高等教育出版社, 2007)
[23] Bereket G, Hur E, Ogretir C. Quantum chemical studies on some imidazole derivativesas corrosion inhibitors for iron in acidic medium[J]. J. Mol. Struct.(Theochem.), 2002, 578: 79
[24] Muralidharan S, Phani K, Pitchumani S. Polyamino-benzoquinone polymers-a new class of corrosion inhibitors for mild steel[J]. J. Electrochem. Soc., 1995, 142(5): 1478
[25] Shi W Y, Ding C, Yan J L, et al. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crys-tal surfaces[J]. Desalination, 2012, 291: 8
[26] Zhang J, Zhao W M, Guo W Y, et al. Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitios[J]. Acta Phys.-Chim. Sin., 2008, 24(7): 1239 (张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239)
[27] Liu J, Liu Z, Liu J, et al. Inhibition performance of a new 3,5-dibromosalicylaldehyde-2-thenoyl hydrazine Schiff base for carbon steel in oilfield water and relevant molecular dynamics simulation[J] J. Chin. Soc. Corros. Prot., 2014, 34(2): 101 (刘洁, 刘峥, 刘进等. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[11] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[12] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[13] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[14] Mingjun CUI,Siming REN,Guang'an ZHANG,Shuan LIU,Haichao ZHAO,Liping WANG,Qunji XUE. Corrosion Performance of Hexagonal Boron Nitride Doped Waterborne Epoxy Coating[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[15] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
No Suggested Reading articles found!