综述了铁还原菌 (IRB) 对海洋中钢铁等材料腐蚀影响的国内外研究进展。阐述了IRB种类和代谢方式的多样性,介绍了其在代谢过程中的电子传递方式;总结了海水环境中IRB所致金属腐蚀机理的研究现状,分析了不同研究者的结论存在差异的原因;最后介绍了研究IRB腐蚀影响常用的方法,并对今后的研究方向提出相应的建议。
利用XRD、SEM和TEM等测试方法研究了淬火-配分-回火 (Q-P-T) 钢热处理后的物相结构和显微组织形貌,并以相同成分的淬火-回火 (Q&T) 钢和不含碳化物的淬火-配分 (Q&P) 钢为参照,利用失重法、电化学测试等方法研究了Q-P-T钢在模拟海水环境3.5% (质量分数) NaCl溶液中的腐蚀行为。结果表明,Q&T钢内的残余奥氏体主要以薄膜状分布在马氏体板条间,其含量低于3% (体积分数),而Q&P钢和Q-P-T钢内的残余奥氏体则以薄片状分布在马氏体板条间,其平均含量分别为15.35% (体积分数) 和14.6% (体积分数);含碳化物的Q-P-T钢的耐蚀性优于不含碳化物的Q&P钢,且经配分的Q-P-T和Q&P钢的耐蚀性能稍优于Q&T钢。4种钢表面腐蚀产物的演变规律基本一致,即初期腐蚀产物以β-FeOOH和γ-FeOOH为主,随浸泡时间的延长,逐渐以α-FeOOH和Fe3O4为主;4种试样腐蚀表面初期均分布着尺寸不一的点蚀坑,随浸泡时间的延长,逐渐变为均匀腐蚀。
通过实验室模拟800 m深海环境及浅海环境,采用动电位极化法、慢应变速率拉伸实验 (SSRT) 并结合扫描电镜 (SEM) 观察断口显微组织研究1000 MPa级高强钢的氢脆敏感性。结果表明,在模拟800 m深海环境中高强钢试样的零电流电位为-708 mV,析氢电位约为-1000 mV;在浅海环境中的零电流电位为-645 mV,析氢电位约为-910 mV。随着阴极极化电位的负移,模拟800 m深海环境及浅海环境实验高强钢均表现出韧性降低、脆性增加、氢脆敏感性增强的现象。模拟800 m深海环境中,极化电位正于-900 mV时,其氢脆系数小于25%,处于安全区;极化电位为-1000 mV时,氢脆系数接近50%,处于脆断区。
通过湿/干循环实验 (在蒸馏水中润湿并在空气中干燥)、场发射扫描电子显微镜 (FE-SEM)、X射线衍射 (XRD)、电子探针 (EPMA) 和其他表面测试技术以及电化学阻抗谱 (EIS),研究了690 MPa高强度贝氏体钢 (简称Q690钢) 在模拟乡村大气中的长期腐蚀行为。结果表明,在整个腐蚀过程中,Q690钢的腐蚀过程可以分为两个阶段,即加速阶段和减速阶段。在腐蚀的早期阶段,以板条贝氏体 (LB) 为主的Q690钢的耐蚀性优于含有铁素体 (F) 和珠光体 (P) 组织的Corten-A钢。在腐蚀后期,Q690钢锈垢中Cr的富集和α-FeOOH的增加增强了锈层的防护性,导致Q690钢的腐蚀速率降低,因此表明Q690钢耐腐蚀性能明显优于Corten-A钢。
利用方波极化技术模拟阴极保护电位波动,通过正交试验方法研究不同电位波动参数,如电位波动频率 (f)、电位波动幅度 (E)、占空比 (δ)、电位总加载时间 (tt) 等,对酸性土壤环境中X100管线钢表面点蚀行为的影响程度大小。结果表明,电位波动参数对点蚀密度影响的顺序为:tt>δ>f>E。当f为0.5 Hz,E为-0.95~-0.7 V,δ为50%和tt为3 d时,宏观点蚀密度最大,即X100管线钢抗局部腐蚀性最差。同时,宏观点蚀密度随f增大而增大,随E升高而增大,在δ为50%时达到最大值,随tt的延长而增大。
采用光学显微镜 (OM)、扫描电子显微镜 (SEM)、能谱分析仪 (EDS)、电化学工作站研究了在不同冷拉拔变形量下,Al-3.0%Mg-0.12%RE (质量分数) 合金微观组织和腐蚀行为的变化规律,探索了冷拉拔变形量和微观组织对合金耐蚀性的影响。结果表明:随着冷拉拔变形量增加,Al-3.0%Mg-0.12%RE合金中等轴状晶粒向纤维状晶粒转变,晶粒均沿拉拔方向拉长,垂直拉拔方向拉扁,晶界处第二相被拉长并随着晶界的变形逐渐向线状分布。合金点蚀均主要发生在合金中的第二相处,随着冷拉拔变形量的增加,Al-3.0%Mg-0.12%RE合金均匀腐蚀敏感性增强,但点蚀敏感性减弱,阻抗半径增大,耐蚀性变好。
利用电沉积技术制备了Ni-Co-B镀层,采用SEM、EDS、ICP-MS、显微硬度仪、电化学工作站和摩擦磨损试验仪研究了电流密度对镀层微观结构、硬度、耐蚀性及耐磨性的影响。结果表明:随着电流密度从1 A/dm2逐渐增加到7 A/dm2,镀层的物相结构为单一面心立方Ni (111) 择优取向结构。晶粒尺寸随电流密度增加呈现先减小后增大的改变。随着电流密度增加,Co和B含量逐渐减小,镀层厚度从17.6 μm增加到50.1 μm,而硬度则由780 HV100 g增高至852 HV100 g,腐蚀电位正移,其中电流密度为5 A/dm2镀层的腐蚀电流密度最小。随着电流密度的增加,干摩擦条件下Ni-Co-B镀层的摩擦系数和磨损量呈现先减小后增大的趋势;与此同时,载荷增大导致Ni-Co-B镀层的摩擦系数降低和磨损量增大,磨损机理以磨粒磨损和疲劳磨损为主;同时,3.5%NaCl条件下Ni-Co-B镀层的摩擦系数和磨损量均呈现先减小后增大的趋势,而载荷增大导致Ni-Co-B镀层的摩擦系数先增大后减小和磨损量的增大,磨损机理以磨料磨损为主。电流密度增加有助于改善Ni-Co-B镀层的晶体结构,提高镀层的硬度、耐磨性及耐蚀性,为发展替代镀铬技术提供了借鉴。
采用干湿交替腐蚀实验和全浸腐蚀实验结合锈层物相分析,研究了桥梁钢Q345qENH、Q420qENH和对比钢种Q345qE在除冰盐环境下的腐蚀行为。结果表明:耐候桥梁钢Q345qENH、Q420qENH在除冰盐腐蚀环境的耐蚀能力明显优于Q345qE钢;同种桥梁钢在不同的结构部位受除冰盐腐蚀程度相差较大,Q345qENH、Q420qENH和Q345qE钢干湿交替腐蚀的加速倍率分别是其全浸腐蚀的26.88倍、27.5倍和33.75倍;干湿交替腐蚀实验随着时间的延长锈层物相结构及含量均有所变化,绝缘的非活性物质α-FeOOH相的增加是导致实验后期腐蚀速率下降的重要原因。
基于大型仿真软件COMSOL Multiphysics建立了7050铝合金与AerMet100钢组成的电偶对在大气环境中的腐蚀模拟预测模型。研究了偶对表面的盐负载量、大气环境的相对湿度以及阴阳极面积比对腐蚀行为的影响。结果表明:在大气环境相对湿度为0.91时腐蚀速率最快,当偶对表面盐负载量超过5.7 g/m2时会发生严重腐蚀,改变阴阳极面积比不会引起电极极性逆转,且盐负载量、偶对阴阳极面积比与7050铝合金腐蚀速率均呈现正相关关系。
在高湿、高热、高盐度和强辐照的湛江海洋大气腐蚀试验站对EH36船板钢进行了15、30、90、180和360 d的暴露实验。通过腐蚀失重计算了不同暴露周期的腐蚀速率,采用SEM观察了锈层表面和截面的微观形貌,采用X射线衍射仪分析了锈层的组成成分,采用EDS分析了锈层中的元素分布,同时对暴露后的试样进行了极化曲线测试。结果表明:EH36船板钢的腐蚀速率先增大、后减小;暴露360 d后,Cr、Ni和Si扩散到锈层中,分布较为均匀,提高了钢的耐腐蚀性能;暴露180和360 d的锈层中均含有γ-FeOOH、β-FeOOH、Fe3O4和α-FeOOH,暴露360 d的锈层中α-FeOOH较多,β-FeOOH较少,锈层中α/γ=0.615,尚未形成稳定的保护性锈层。
通过光学显微镜和透射电镜分析T95钢第二相及合金元素对材料抗应力腐蚀开裂 (SCC) 性能影响。在不同酸性pH值条件下,结合动电位极化方法、恒载荷拉伸以及显微镜微观分析等方法,研究了T95油井管钢的应力腐蚀行为,并探究了其裂纹发生机制。结果表明,T95钢的SCC行为对pH值敏感,在pH值2.8~4.5之间存在一个临界值,溶液pH值低至2.8及以下时T95钢的SCC敏感性高;腐蚀溶液pH值降低,应力环断裂时间缩短,T95钢SCC敏感性增加。随着溶液pH值降低,环境输入H+电流 (IH+) 增加,阴极反应加强,促进氢致开裂;H+在裂尖聚集,促进裂纹扩展,加强阳极溶解。T95钢的裂纹扩展受到阳极溶解和氢致开裂机制协同作用。
采用“风筝悬挂湿烛”大气Cl-沉降速率样品收集方法,利用离子色谱法分析样品溶液Cl-的浓度,获得了夏季不同月份、不同垂直高度近海大气中Cl-沉降速率,利用Pearson相关系数法分析了环境因素对Cl-沉降速率的影响。结果表明:南海岛屿夏季三个月大气Cl-沉降速率在10~100 m范围内的垂向分布呈反“S”分布;南海岛屿夏季高空大气Cl-沉降速率从6月到8月逐渐降低。