Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 439-447    DOI: 10.11902/1005.4537.2019.261
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响
李聪玮1, 杜双明1, 曾志琳2, 刘二勇1(), 王飞虎1, 马付良2
1 西安科技大学材料科学与工程学院 西安 710054
2 西安交通大学材料科学与工程学院 西安 710029
Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating
LI Congwei1, DU Shuangming1, ZENG Zhilin2, LIU Eryong1(), WANG Feihu1, MA Fuliang2
1 School of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 School of Material Science and Engineering, Xi'an Jiaotong University of Science and Technology, Xi'an 710029, China
全文: PDF(12077 KB)   HTML
摘要: 

利用电沉积技术制备了Ni-Co-B镀层,采用SEM、EDS、ICP-MS、显微硬度仪、电化学工作站和摩擦磨损试验仪研究了电流密度对镀层微观结构、硬度、耐蚀性及耐磨性的影响。结果表明:随着电流密度从1 A/dm2逐渐增加到7 A/dm2,镀层的物相结构为单一面心立方Ni (111) 择优取向结构。晶粒尺寸随电流密度增加呈现先减小后增大的改变。随着电流密度增加,Co和B含量逐渐减小,镀层厚度从17.6 μm增加到50.1 μm,而硬度则由780 HV100 g增高至852 HV100 g,腐蚀电位正移,其中电流密度为5 A/dm2镀层的腐蚀电流密度最小。随着电流密度的增加,干摩擦条件下Ni-Co-B镀层的摩擦系数和磨损量呈现先减小后增大的趋势;与此同时,载荷增大导致Ni-Co-B镀层的摩擦系数降低和磨损量增大,磨损机理以磨粒磨损和疲劳磨损为主;同时,3.5%NaCl条件下Ni-Co-B镀层的摩擦系数和磨损量均呈现先减小后增大的趋势,而载荷增大导致Ni-Co-B镀层的摩擦系数先增大后减小和磨损量的增大,磨损机理以磨料磨损为主。电流密度增加有助于改善Ni-Co-B镀层的晶体结构,提高镀层的硬度、耐磨性及耐蚀性,为发展替代镀铬技术提供了借鉴。

关键词 Ni-Co-B镀层电流密度微观结构耐蚀性耐磨性    
Abstract

Ni-Co-B coating is prepared on Cu-sheet using electro-deposition method. The effect of current density on the microstructure, hardness, wear resistance and corrosion resistance of the coating is examined by means of SEM, EDS, ICP-MS, microhardness tester, friction and wear tester and electrochemical workstation. The results demonstrate that, as the current density gradually increased from 1 A/dm2 to 7 A/dm2, the prepared coatings consist of a single face-centered cubic phase with Ni (111) preferred orientation, while the grain size decreases first and then increases. Furthermore, when coatings were made with the increasing current density within the range 1~7 A/dm2, they present the following features: the content of Co and B gradually decreased; the thickness increased from 17.6 μm to 50.1 μm; the hardness increased from 780 HV100 g to 852 HV100 g; the free corrosion potential shifts positively in 3.5%NaCl solution, and among others, the one prepared with 5 A/dm2, presents the smallest corrosion current density. By dry wear test in air, the friction coefficient and wear mass loss decreases first and then increases, whilst with the increasing applied load, their friction coefficient decreases but the wear mass loss increases, and the wear mechanism is mainly abrasive wear and fatigue wear. Accordingly, in 3.5%NaCl solution, their friction coefficient and wear mass loss decreases first and then increases and the increase of applied load results in that the friction coefficient increases first and then decreases but the wear mass loss increases, and the wear mechanism is mainly abrasive wear. The research shows that the increased current density is helpful to improve the microstructure, as well as enhance the hardness, abrasion resistance and corrosion resistance of the Ni-Co-B coating, which provides a reference for the development of alternative chromium plating technology.

Key wordsNi-Co-B coating    current density    microstructure    corrosion resistance    wear resistance
收稿日期: 2019-12-16     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51705415);陕西省自然科学基础研究计划(2018JM5072);中科院海洋新材料与应用技术重点实验室开放课题(2018K01)
通讯作者: 刘二勇     E-mail: ley401@163.com
Corresponding author: LIU Eryong     E-mail: ley401@163.com
作者简介: 李聪玮,男,1992年生,硕士

引用本文:

李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
Congwei LI, Shuangming DU, Zhilin ZENG, Eryong LIU, Feihu WANG, Fuliang MA. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 439-447.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.261      或      https://www.jcscp.org/CN/Y2020/V40/I5/439

图1  不同电流密度的Ni-Co-B镀层XRD谱
图2  不同电流密度电沉积Ni-Co-B的表面形貌
I / A·dm-2NiCoB
178.8419.951.21
383.4315.770.80
586.7312.620.65
789.659.920.43
表1  电沉积Ni-Co-B合金镀层的化学成分
图3  不同电流密度Ni-Co-B镀层截面形貌
图4  电沉积Ni-Co-B镀层硬度随电流密度的变化
图5  Ni-Co-B镀层的极化曲线与电流密度的关系
I / A·dm-2Icorr / A·cm-2Ecorr / V
12.36×10-7-0.28943
32.61×10-6-0.21269
53.08×10-8-0.18325
75.14×10-7-0.23547
表2  不同电流密度下Ni-Co-B合金镀层的极化曲线拟合参数
图6  干摩擦条件下镀层磨损量与摩擦系数
图7  干摩擦条件下 (15 N,2 Hz) 镀层的磨痕形貌
图8  干摩擦条件下的磨痕表面EDS分析
图9  NaCl溶液中镀层的磨损量与摩擦系数
图10  在3.5%NaCl溶液中 (15 N,2 Hz) 镀层的磨痕形貌
图11  3.5%NaCl溶液下磨痕表面EDS分析
[1] Karimzadeh A, Aliofkhazraei M, Walsh F C, et al. A review of electrodeposited Ni-Co alloy and composite coatings: Microstructure, properties and applications [J]. Surf. Coat. Technol., 2019, 372: 463
[2] Zhang J S, Tu Z M, An M Z, et al. Study and application of Cr substitute coating [J]. Electroplat. Pollut. Control, 2001, 21(4): 4
[2] (张景双, 屠振密, 安茂忠等. 代铬镀层的研究和应用 [J]. 电镀与环保, 2001, 21(4): 4)
[3] Wang L P, Gao Y, Zeng Z X, et al. Progress in developing Nickel-base alloy coatings for substitute hard chromium [J]. Electroplat. Pollut. Control, 2005, 25(3): 1
[3] (王立平, 高燕, 曾志翔等. 代硬铬镍基合金镀层的研究进展 [J]. 电镀与环保, 2005, 25(3): 1)
[4] Cui Y, Wang P X, Liu L, et al. Ni-Co-B nanocrystalline alloy electrodeposition for substituting hard chromium [J]. Chin. J. Nonferrous Met., 2012, 22: 3113
[4] (崔莹, 杨培霞, 刘磊等. 电沉积Ni-Co-B纳米晶合金代硬铬镀层 [J]. 中国有色金属学报, 2012, 22: 3113)
[5] Farzaneh M A, Zamanzad-Ghavidel M R, Raeissi K, et al. Effects of Co and W alloying elements on the electrodeposition aspects and properties of nanocrystalline Ni alloy coatings [J]. Appl. Surf. Sci., 2011, 257: 5919
[6] Li Y D, Jiang H, Wang D, et al. Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni-Co alloys [J]. Surf. Coat. Technol., 2008, 202: 4952
doi: 10.1016/j.surfcoat.2008.04.093
[7] Tao Y Q, Ma F L, Teng M Y, et al. Designed fabrication of super high hardness Ni-B-Sc nanocomposite coating for anti-wear application [J]. Appl. Surf. Sci., 2019, 492: 426
doi: 10.1016/j.apsusc.2019.06.233
[8] Indyka P, Beltowska-Lehman E, Tarkowski L, et al. Structure characterization of nanocrystalline Ni-W alloys obtained by electrodeposition [J]. J. Alloy. Compd., 2014, 590: 75
doi: 10.1016/j.jallcom.2013.12.085
[9] Yonezu A, Niwa M, Ye J P, et al. Contact fracture mechanism of electroplated Ni-P coating upon stainless steel substrate [J]. Mater. Sci. Eng., 2013, A563: 184
[10] Campillo B, Sebastian P J, Gamboa S A, et al. Electrodeposited Ni-Co-B alloy: Application in water electrolysis [J]. Mater. Sci. Eng., 2002, C19: 115
[11] Chung C K, Chang W T. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films [J]. Thin Solid Films, 2009, 517: 4800
doi: 10.1016/j.tsf.2009.03.087
[12] Wang D, Gao J C, Zhang J Q, et al. Effect of deposition parameters on the composition and microstructure of electrodeposited Ni-Co films [J]. J. Sichuan Univ. (Nat. Sci. Ed.), 2013, 50: 118
[12] (王丹, 高吉成, 张骥群等. 沉积参数对Ni-Co镀层成分及微观结构影响研究 [J]. 四川大学学报 (自然科学版), 2013, 50: 118)
[13] Ogihara H, Udagawa K, Saji T, et al. Effect of boron content and crystalline structure on hardness in electrodeposited Ni-B alloy films [J]. Surf. Coat. Technol., 2012, 206: 2933
doi: 10.1016/j.surfcoat.2011.12.025
[14] Krishnaveni K, Narayanan T S N S, Seshadri S K, et al. Electroless Ni-B coatings: Preparation and evaluation of hardness and wear resistance [J]. Surf. Coat. Technol., 2005, 190: 115
doi: 10.1016/j.surfcoat.2004.01.038
[15] Zhang Y R, Chen H, Xiong W. Tribological performance of AlCrN coating sliding against Si-based ceramic balls in ambient air and seawater conditions [J]. Nonferrous Met. Sci. Eng., 2017, 8: 99
[15] (章杨荣, 陈颢, 熊伟. AlCrN/硅系陶瓷在大气、海水环境下的摩擦学性能 [J]. 有色金属科学与工程, 2017, 8: 99)
[16] Liu J Y, Zhao Y, Dong S Y, et al. Effect of load on wear resistance of Ni-Co alloy coating [J]. J. Acad. Armored Force Eng., 2017, 31(4): 106
[16] (刘霁云, 赵阳, 董世运等. 载荷对镍钴合金镀层耐磨性的影响 [J]. 装甲兵工程学院学报, 2017, 31(4): 106)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[10] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[11] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[13] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[14] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[15] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.