Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 432-438    DOI: 10.11902/1005.4537.2019.201
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究
张欣1,2(), 杨光恒1, 王泽华1, 曹静1, 邵佳1, 周泽华1
1 河海大学力学与材料学院 南京 211100
2 河海大学海洋与近海工程研究院 南通 226300
Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation
ZHANG Xin1,2(), YANG Guangheng1, WANG Zehua1, CAO Jing1, SHAO Jia1, ZHOU Zehua1
1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2 Ocean and Offshore Engineering Research Institute, Hohai University, Nantong 226300, China
全文: PDF(19172 KB)   HTML
摘要: 

采用光学显微镜 (OM)、扫描电子显微镜 (SEM)、能谱分析仪 (EDS)、电化学工作站研究了在不同冷拉拔变形量下,Al-3.0%Mg-0.12%RE (质量分数) 合金微观组织和腐蚀行为的变化规律,探索了冷拉拔变形量和微观组织对合金耐蚀性的影响。结果表明:随着冷拉拔变形量增加,Al-3.0%Mg-0.12%RE合金中等轴状晶粒向纤维状晶粒转变,晶粒均沿拉拔方向拉长,垂直拉拔方向拉扁,晶界处第二相被拉长并随着晶界的变形逐渐向线状分布。合金点蚀均主要发生在合金中的第二相处,随着冷拉拔变形量的增加,Al-3.0%Mg-0.12%RE合金均匀腐蚀敏感性增强,但点蚀敏感性减弱,阻抗半径增大,耐蚀性变好。

关键词 Al-3.0%Mg-0.12%RE合金冷拉拔变形腐蚀行为点蚀    
Abstract

Al-Mg alloys are considered as the ideal electromagnetic shielding materials and widely applied on electronic and communication servicing in marine environment due to their excellent comprehensive properties, such as high specific strength, low electric resistivity and excellent corrosion resistance. The microstructure and corrosion behavior of Al-3.0%Mg-0.12%RE alloy wires subjected to different cold drawing deformation was investigated by means of optical microscope (OM), scanning electron microscope (SEM), energy disperse spectroscopy (EDS) and electrochemical measurement. The influence of cold-drawing strain and microstructure on corrosion resistance of the alloy was also examined. The results indicated that the equiaxed grains of the alloys were elongated and the skeletal second phase particles were fragmented during the cold-drawing process. The corrosion behavior of the Al-3.0%Mg-0.12%RE alloy showed typical characteristics of pitting corrosion at the position of second phases. With the increase of strain, the uniform corrosion sensibility increased, pitting corrosion sensibility declined and the corrosion resistance of the alloy improved.

Key wordsAl-3.0%Mg-0.12%RE alloy    cold drawing process    corrosion behavior    pitting corrosion
收稿日期: 2019-11-13     
ZTFLH:  TG174  
基金资助:南通市科技计划项目(JC2018047);中央高校基本科研业务费项目(2018B02514)
通讯作者: 张欣     E-mail: zhangxin.007@163.com
Corresponding author: ZHANG Xin     E-mail: zhangxin.007@163.com
作者简介: 张欣

引用本文:

张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
Xin ZHANG, Guangheng YANG, Zehua WANG, Jing CAO, Jia SHAO, Zehua ZHOU. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 432-438.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.201      或      https://www.jcscp.org/CN/Y2020/V40/I5/432

图1  铝合金浇注试样
图2  拉拔装置示意图
图3  组织分析和耐蚀性测试取样示意图
图4  铸态Al-3.0%Mg-0.12%RE合金微观组织形貌与EDS元素分析
图5  不同变形量下Al-3.0%Mg-0.12%RE合金微观组织形貌
图6  不同变形量Al-3.0%Mg-0.12%RE合金的第二相形貌
图7  铸态Al-3.0%Mg-0.12%RE合金在3.5%NaCl溶液中浸泡21 d后合金表面形貌和EDS分析
图8  不同变形量Al-3.0%Mg-0.12%RE合金在浸泡21 d后表面形貌
图9  不同变形量Al-3.0%Mg-0.12%RE合金在3.5%NaCl溶液中极化曲线
Strain / %Ecorr / VEpit / V
0-1.164-0.855
51-1.159-0.863
64-1.183-0.832
73-1.185-0.777
84-1.196-0.767
91-1.198-0.755
96-1.266-0.744
表1  不同变形量Al-3.0%Mg-0.12%RE合金的Ecorr和Epit值
图10  不同变形量Al-3.0%Mg-0.12%RE合金Nyquist图
[1] Jiang S X, Guo R H. Electromagnetic shielding and corrosion resistance of electroless Ni-P/Cu-Ni multilayer plated polyester fabric [J]. Surf. Coat. Technol., 2011, 205: 4274
[2] Chen X H, Liu J, Zhang Z H, et al. Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy [J]. Mater. Des., 2012, 42: 327
[3] Dou Z Y, Wu G H, Huang X L, et al. Electromagnetic shielding effectiveness of aluminum alloy-fly ash composites [J]. Composites, 2007, 38A: 186
[4] Rubeẑiené V, Baltušnikaité J, Varnaité-Źuravliova S, et al. Development and investigation of electromagnetic shielding fabrics with different electrically conductive additives [J]. J. Electrostat., 2015, 75: 90
doi: 10.1016/j.elstat.2015.03.009
[5] Wu Z G, Song M, He Y H. Effects of Er on the microstructure and mechanical properties of an as-extruded Al-Mg alloy [J]. Mater. Sci. Eng., 2009, A504: 183
[6] Chen H H, Wang J Y, Lee J, et al. Superplasticity of AA5083 alloy as processed by equal channel angular extrusion [J]. J. Alloy.Compd., 2008, 460: 305
[7] Sharma M M, Ziemian C W. Pitting and stress corrosion cracking susceptibility of nanostructured Al-Mg alloys in natural and artificial environments [J]. J. Mater. Eng. Perform., 2008, 17: 870
doi: 10.1007/s11665-008-9215-7
[8] Zhang X, Wang Z H, Zhou Z H, et al. Effects of cerium and lanthanum on the corrosion behavior of Al-3.0wt.%Mg alloy [J]. J. Mater. Eng. Perform., 2016, 25: 1122
doi: 10.1007/s11665-016-1948-0
[9] Zhang X, Wang Z H, Zhou Z H, et al. Influence of rare earth (Ce and La) addition on the performance of Al-3.0wt%Mg alloy [J]. J. Wuhan Univ. Technol., 2017, 32: 611
doi: 10.1007/s11595-017-1642-6
[10] Kustra P, Milenin A, Byrska-Wójcik D, et al. The process of ultra-fine wire drawing for magnesium alloy with the guaranteed restoration of ductility between passes [J]. J. Mater. Process. Technol., 2017, 247: 234
doi: 10.1016/j.jmatprotec.2017.04.022
[11] Cao T S, Vachey C, Montmitonnet P, et al. Comparison of reduction ability between multi-stage cold drawing and rolling of stainless steel wire-experimental and numerical investigations of damage [J]. J. Mater. Process. Technol., 2015, 217: 30
doi: 10.1016/j.jmatprotec.2014.10.020
[12] Hanazaki K, Shigeiri N, Tsuji N. Change in microstructures and mechanical properties during deep wire drawing of copper [J]. Mater. Sci. Eng., 2010, A527: 5699
[13] Chen T, John H, Xu J, et al. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: Effect of machine hammer peening [J]. Corros. Sci., 2013, 77: 230
doi: 10.1016/j.corsci.2013.08.007
[14] Renton N C, Elhoud A M, Deans W F. Effect of plastic deformation on the corrosion behavior of a super-duplex stainless steel [J]. J. Mater. Eng. Perform., 2011, 20: 436
doi: 10.1007/s11665-010-9688-z
[15] Krawiec H, Vignal V, Loch J, et al. Influence of plastic deformation on the microstructure and corrosion behaviour of Ti-10Mo-4Zr and Ti-6Al-4V alloys in the ringer’s solution at 37 ℃ [J]. Corros. Sci., 2015, 96: 160
doi: 10.1016/j.corsci.2015.04.006
[16] Korchef A, Kahoul A. Corrosion behavior of commercial aluminum alloy processed by equal channel angular pressing [J]. Int. J. Corros., 2013, 2013: 983261
[17] Akiyama E, Zhang Z G, Watanabe Y, et al. Effects of severe plastic deformation on the corrosion behavior of aluminum alloys [J]. J. Solid State Electrochem., 2009, 13: 277
doi: 10.1007/s10008-007-0496-9
[18] Brunner J G, Birbilis N, Ralston K D, et al. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J]. Corros. Sci., 2012, 57: 209
doi: 10.1016/j.corsci.2011.12.016
[19] Huang Z H, Guo X F, Zhang Z M, et al. Effects of Ce on corrosion resistance of AZ91D magnesium alloy [J]. Acta Metall. Sin., 2005, 18: 129
[20] Wang S G, Huang Y J, Han H B, et al. The electrochemical corrosion characterization of bulk nanocrystalline aluminium by X-ray photoelectron spectroscopy and ultra-violet photoelectron spectroscopy [J]. J. Electroanalyt. Chem., 2014, 724: 95
[21] Li Y, Wang F H, Liu G. Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel [J]. Corrosion, 2004, 60: 891
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[5] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[10] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[11] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[13] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[14] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[15] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.