Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 409-415    DOI: 10.11902/1005.4537.2019.141
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响
周宇1,2, 张海兵2(), 杜敏1, 马力2
1 中国海洋大学化学化工学院 青岛 266100
2 中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment
ZHOU Yu1,2, ZHANG Haibing2(), DU Min1, MA Li2
1 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
全文: PDF(16516 KB)   HTML
摘要: 

通过实验室模拟800 m深海环境及浅海环境,采用动电位极化法、慢应变速率拉伸实验 (SSRT) 并结合扫描电镜 (SEM) 观察断口显微组织研究1000 MPa级高强钢的氢脆敏感性。结果表明,在模拟800 m深海环境中高强钢试样的零电流电位为-708 mV,析氢电位约为-1000 mV;在浅海环境中的零电流电位为-645 mV,析氢电位约为-910 mV。随着阴极极化电位的负移,模拟800 m深海环境及浅海环境实验高强钢均表现出韧性降低、脆性增加、氢脆敏感性增强的现象。模拟800 m深海环境中,极化电位正于-900 mV时,其氢脆系数小于25%,处于安全区;极化电位为-1000 mV时,氢脆系数接近50%,处于脆断区。

关键词 模拟深海环境高强钢氢脆阴极极化慢应变速率拉伸    
Abstract

The hydrogen embrittlement of a 1000 MPa grade high strength steel in simulated 800 m deep-sea environment and shallow sea environment by open circuit potential or applied various cathodic potentials was comparatively studied by means of slow strain rate tensile tests, potentiodynamic polarization measurements and SEM. Results showed that for the high strength steel, the open circuit potential was approximately -708 mV (vs Ag/AgCl/seawater) and the hydrogen evolution potentials was about -1000 mV (vs Ag/AgCl/seawater) in the simulated 800 m deep-sea environment. While the open circuit potential was approximately -645 mV (vs Ag/AgCl/seawater) and the hydrogen evolution potentials was about -910 mV (vs Ag/AgCl/seawater) in the shallow sea environment. With the cathodic polarization potential dropped from -800 mV to -1000 mV, the toughness of the tested high-strength steel was reduced, i.e. the brittleness was increased, implying that the susceptibility to hydrogen embitterment was enhanced. When the polarization potential was higher than -900 mV, the hydrogen embrittlement coefficient of high-strength steel was less than 25%, namely, the steel is still in the safe range. When the polarization potential reached further to -1000 mV, the hydrogen embrittlement coefficient increased to about 50%, which was in the brittle fracture range for the steel.

Key wordssimulated deep sea environment    high strength steel    hydrogen embrittlement    cathodic potential    slow strain rate test
收稿日期: 2019-09-02     
ZTFLH:  TG174.3  
通讯作者: 张海兵     E-mail: zhanghb@sunrui.net
Corresponding author: ZHANG Haibing     E-mail: zhanghb@sunrui.net
作者简介: 周宇,男,1993年生,硕士生

引用本文:

周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
Yu ZHOU, Haibing ZHANG, Min DU, Li MA. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 409-415.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.141      或      https://www.jcscp.org/CN/Y2020/V40/I5/409

图1  慢应变拉伸试样形状及尺寸
图2  实验高强钢在模拟浅海及深海环境下的极化曲线
图3  实验高强钢在模拟深海和浅海环境中不同极化电位下的应力-应变曲线
图4  实验高强钢在模拟深海环境和浅海环境中的断面收缩率和氢脆系数与极化电位关系
图5  实验高强钢在空气中以及在模拟深海环境中不同极化电位下试样断裂后宏观断口形貌
图6  实验高强钢在浅海环境中断裂后的宏观断口形貌
图7  实验高强钢在空气中以及在深海环境中不同电位下断口的SEM像
图8  实验高强钢在浅海环境中不同电位下断口的SEM像
[1] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
[1] (侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
[2] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
[3] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
[3] (周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
[4] Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
[4] (王勋龙, 于青, 王燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
[5] Jia H G, Wang J. Application and progress of technology in corrosion research on deep-sea environment simulation [J]. Total Corros. Control, 2014, 28(8): 27
[5] (贾红刚, 王佳. 深海环境模拟技术在腐蚀研究上的应用现状与发展 [J]. 全面腐蚀控制, 2014, 28(8): 27)
[6] Xing S H, Li Y, Ma L, et al. Research progress in cathodic protection technology for marine infrastructures in deep sea environment [J]. Equip. Environ. Eng., 2015, 12(2): 49
[6] (邢少华, 李焰, 马力等. 深海工程装备阴极保护技术进展 [J]. 装备环境工程, 2015, 12(2): 49)
[7] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
[7] (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
[8] Djukic M B, Zeravcic V S, Bakic G, et al. Hydrogen embrittlement of low carbon structural steel [J]. Proced. Mater. Sci., 2014, 3: 1167
[9] Cherubini A, Bacchi L, Corsinovi S, et al. Hydrogen embrittlement in advanced high strength steels and ultra high strength steels: A new investigation approach [J]. Proced. Struct. Integrity, 2018, 13: 753
[10] Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
[11] Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22
[12] Jeong D, Jung W, Kim Y, et al. Stress corrosion cracking behavior of X80 steel in artificial seawater under controlled strain rate and applied potentials [J]. Met. Mater. Int., 2015, 21: 785
[13] Meinhardt C P, Scheid A, Dos Santos J F, et al. Hydrogen embrittlement under cathodic protection of friction stir welded UNS S32760 super duplex stainless steel [J]. Mater. Sci. Eng., 2017, A706: 48
[14] Venezuela J, Zhou Q J, Liu Q L, eta l. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
[15] Tavares S S M, Bastos I N, Pardal J M, et al. Slow strain rate tensile test results of new multiphase 17%Cr stainless steel under hydrogen cathodic charging [J]. Int. J. Hydrog. Energy, 2015, 40: 16992
[16] Matsumoto Y, Miyashita T, Takai K. Hydrogen behavior in high strength steels during various stress applications corresponding to different hydrogen embrittlement testing methods [J]. Mater. Sci. Eng., 2018, A735: 61
[17] Pan D W, Gao X X, Ma L, et al. Cathodic protection criteria of high strength steel in simulated deep-sea environment [J]. Corros. Prot., 2016, 37: 225
[17] (潘大伟, 高心心, 马力等. 模拟深海环境中高强钢的阴极保护准则 [J]. 腐蚀与防护, 2016, 37: 225)
[18] Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
[19] Liu Y, Li Y, Li Q. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment [J]. Acta Metall. Sin., 2013, 49: 1089
[19] (刘玉, 李焰, 李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响 [J]. 金属学报, 2013, 49: 1089)
[20] Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, A528: 4927
[1] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[5] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[6] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[7] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[8] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[9] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[10] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[11] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[12] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[13] 郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[14] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[15] 郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.