|
|
模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 |
周宇1,2, 张海兵2( ), 杜敏1, 马力2 |
1 中国海洋大学化学化工学院 青岛 266100 2 中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237 |
|
Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment |
ZHOU Yu1,2, ZHANG Haibing2( ), DU Min1, MA Li2 |
1 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China 2 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China |
引用本文:
周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
Yu ZHOU,
Haibing ZHANG,
Min DU,
Li MA.
Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 409-415.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.141
或
https://www.jcscp.org/CN/Y2020/V40/I5/409
|
[1] |
Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
|
[1] |
(侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
|
[2] |
Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
|
[3] |
Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
|
[3] |
(周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
|
[4] |
Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
|
[4] |
(王勋龙, 于青, 王燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
|
[5] |
Jia H G, Wang J. Application and progress of technology in corrosion research on deep-sea environment simulation [J]. Total Corros. Control, 2014, 28(8): 27
|
[5] |
(贾红刚, 王佳. 深海环境模拟技术在腐蚀研究上的应用现状与发展 [J]. 全面腐蚀控制, 2014, 28(8): 27)
|
[6] |
Xing S H, Li Y, Ma L, et al. Research progress in cathodic protection technology for marine infrastructures in deep sea environment [J]. Equip. Environ. Eng., 2015, 12(2): 49
|
[6] |
(邢少华, 李焰, 马力等. 深海工程装备阴极保护技术进展 [J]. 装备环境工程, 2015, 12(2): 49)
|
[7] |
Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
|
[7] |
(李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
|
[8] |
Djukic M B, Zeravcic V S, Bakic G, et al. Hydrogen embrittlement of low carbon structural steel [J]. Proced. Mater. Sci., 2014, 3: 1167
|
[9] |
Cherubini A, Bacchi L, Corsinovi S, et al. Hydrogen embrittlement in advanced high strength steels and ultra high strength steels: A new investigation approach [J]. Proced. Struct. Integrity, 2018, 13: 753
|
[10] |
Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
|
[11] |
Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22
|
[12] |
Jeong D, Jung W, Kim Y, et al. Stress corrosion cracking behavior of X80 steel in artificial seawater under controlled strain rate and applied potentials [J]. Met. Mater. Int., 2015, 21: 785
|
[13] |
Meinhardt C P, Scheid A, Dos Santos J F, et al. Hydrogen embrittlement under cathodic protection of friction stir welded UNS S32760 super duplex stainless steel [J]. Mater. Sci. Eng., 2017, A706: 48
|
[14] |
Venezuela J, Zhou Q J, Liu Q L, eta l. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
|
[15] |
Tavares S S M, Bastos I N, Pardal J M, et al. Slow strain rate tensile test results of new multiphase 17%Cr stainless steel under hydrogen cathodic charging [J]. Int. J. Hydrog. Energy, 2015, 40: 16992
|
[16] |
Matsumoto Y, Miyashita T, Takai K. Hydrogen behavior in high strength steels during various stress applications corresponding to different hydrogen embrittlement testing methods [J]. Mater. Sci. Eng., 2018, A735: 61
|
[17] |
Pan D W, Gao X X, Ma L, et al. Cathodic protection criteria of high strength steel in simulated deep-sea environment [J]. Corros. Prot., 2016, 37: 225
|
[17] |
(潘大伟, 高心心, 马力等. 模拟深海环境中高强钢的阴极保护准则 [J]. 腐蚀与防护, 2016, 37: 225)
|
[18] |
Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
|
[19] |
Liu Y, Li Y, Li Q. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment [J]. Acta Metall. Sin., 2013, 49: 1089
|
[19] |
(刘玉, 李焰, 李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响 [J]. 金属学报, 2013, 49: 1089)
|
[20] |
Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, A528: 4927
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|