Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 469-473    DOI: 10.11902/1005.4537.2019.282
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制
艾芳芳1,2(), 陈义庆1,2, 钟彬1,2, 李琳1,2, 高鹏1,2, 伞宏宇1,2, 苏显栋1,2
1 海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
2 鞍钢集团钢铁研究院 鞍山 114009
Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment
AI Fangfang1,2(), CHEN Yiqing1,2, ZHONG Bin1,2, LI Lin1,2, GAO Peng1,2, SHAN Hongyu1,2, SU Xiandong1,2
1 State Key Laboratory of Material for Marine Equipment and Application, Anshan 114009, China
2 Ansteel Iron & Research Institute, Anshan 114009, China
全文: PDF(7756 KB)   HTML
摘要: 

通过光学显微镜和透射电镜分析T95钢第二相及合金元素对材料抗应力腐蚀开裂 (SCC) 性能影响。在不同酸性pH值条件下,结合动电位极化方法、恒载荷拉伸以及显微镜微观分析等方法,研究了T95油井管钢的应力腐蚀行为,并探究了其裂纹发生机制。结果表明,T95钢的SCC行为对pH值敏感,在pH值2.8~4.5之间存在一个临界值,溶液pH值低至2.8及以下时T95钢的SCC敏感性高;腐蚀溶液pH值降低,应力环断裂时间缩短,T95钢SCC敏感性增加。随着溶液pH值降低,环境输入H+电流 (IH+) 增加,阴极反应加强,促进氢致开裂;H+在裂尖聚集,促进裂纹扩展,加强阳极溶解。T95钢的裂纹扩展受到阳极溶解和氢致开裂机制协同作用。

关键词 酸性介质应力腐蚀恒载荷拉伸H2S裂纹扩展油井管    
Abstract

The effect of second phases and alloying elements on stress corrosion cracking (SCC) behavior of oil well steel T95 in sour H2S environments was investigated by means of electrochemical polarization measurement, constant tensile test, optical microscope and transmission microscope. Results showed that solutions of pH=2.3 and pH=2.8 were SCC sensitive environment to T95. With the decreasing pH, cracking time of the prestressed rings decreased, namely, the SCC sensitivity of T95 increased. With the decrease of pH, the IH+ (input current from the environment) increased, while the cathode reaction was enhanced, as a consequence, the hydrogen induced cracking (HIC) occurred. Meanwhile, the aggregation of H+ on the crack tip might promote the crack expansion, accordingly, the anodic dissolution was enhanced. The crack propagation was controlled simultaneously by anodic dissolution (AD) and hydrogen embrittlement (HE) in the solutions of pH=2.3 and pH=2.8.

Key wordsacid media    stress corrosion    constant load tensile    H2S    crack propagation    oil well pipe steel
收稿日期: 2019-12-31     
ZTFLH:  TG172  
通讯作者: 艾芳芳     E-mail: ansteelaff@163.com
Corresponding author: AI Fangfang     E-mail: ansteelaff@163.com
作者简介: 艾芳芳

引用本文:

艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
Fangfang AI, Yiqing CHEN, Bin ZHONG, Lin LI, Peng GAO, Hongyu SHAN, Xiandong SU. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 469-473.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.282      或      https://www.jcscp.org/CN/Y2020/V40/I5/469

图1  T95钢的金相组织
图2  T95钢组织和碳化物析出情况
图3  渗碳体分布和EDS分析
图4  3种pH值溶液中T95钢动电位极化曲线
图5  T95钢应力环实验结果
图6  T95钢空气中断口SEM形貌
图7  溶液pH值为2.8和2.3中T95钢断口SEM形貌
[1] Zhao Y N. Stress corrosion experimental research of 304 austenitic stainless steel in H2S+Cl-+CO2+H2O complex medium condition [D]. Hangzhou: Zhejiang University of Technology, 2016
[1] (赵亚楠. 304奥氏体不锈钢在H2S+Cl-+CO2+H2O复杂介质环境下的应力腐蚀试验研究 [D]. 杭州: 浙江工业大学, 2016)
[2] Li M, Li X G, Chen H. A review on corrosion behavior and mechanism of metals in wet H2S [J]. Corros. Sci. Prot. Technol., 2005, 17: 107
[2] (李明, 李晓刚, 陈华. 在湿H2S环境中金属腐蚀行为和机理研究概述 [J]. 腐蚀科学与防护技术, 2005, 17: 107)
[3] Zheng H J, Zhang K D. Stress effect in SCC system of 16MnR material in saturated H2S solution [J]. J. Zhejiang Univ. Technol., 2001, 29: 360
[3] (郑华均, 张康达. 应力在16MnR钢饱和硫化氢溶液应力腐蚀体系中的作用 [J]. 浙江工业大学学报, 2001, 29: 360)
[4] Liu Z Y, Zhai G L, Du C W, et al. Stress corrosion behavior of X70 pipeline steel in simulated solution of acid soil [J]. Acta Metall. Sin., 2008, 44: 209
[4] (刘智勇, 翟国丽, 杜翠薇等. X70钢在酸性土壤模拟溶液中的应力腐蚀行为 [J]. 金属学报, 2008, 44: 209)
[5] Yan M C, Sun C, Xu J, et al. Stress corrosion of pipeline steel under occluded coating disbondment in a red soil environment [J]. Corros. Sci., 2015, 93: 27
[6] Bai W F. Study on the influencing factors on wet H2S stress corrosion cracking test of oil tube [D]. Shanghai: Shanghai Jiao Tong University, 2010
[6] (柏文峰. 油井管在湿硫化氢环境下应力腐蚀试验若干影响因素研究 [D]. 上海: 上海交通大学, 2010)
[7] Liu Z Y, Li X G, Du C W, et al. Experimental Evaluation Method of Corrosion Behavior and Mechanism for Typical Materials in Oil/Gas-Field Environments [M]. Beijing: Science Press, 2016: 110
[7] (刘智勇, 李晓刚, 杜翠薇等. 典型材料油气田腐蚀实验评价方法 [M]. 北京: 科学出版社, 2016: 110)
[8] Gutzeit J. Corrosion of steel by sulphides and cyanides in refinery condensate water [J]. Mater. Prot., 1968, 12: 17
[9] Zhao M C, Shan Y Y, Li Y H, et al. Effect of microstructure on sulfide stress corrosion cracking of pipeline steels [J]. Acta Metall. Sin., 2001, 37: 1087
[9] (赵明纯, 单以银, 李玉海等. 显微组织对管线钢硫化物应力腐蚀开裂的影响 [J]. 金属学报, 2001, 37: 1087)
[10] Lu Z M. Research on stress corrosion cracking of typical pressure vessel steels in wet hydrogen sulfide service [D]. Hangzhou: Zhejiang University, 2003
[10] (卢志明. 典型压力容器用钢在湿硫化氢环境中的应力腐蚀开裂研究 [D]. 杭州: 浙江大学, 2003)
[11] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2 environment [J]. J. Mater. Sci., 2009, 44: 4228
[12] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
[13] Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
[14] He X, Cui YH, Li G B, et al. Crack growth driving force at tip of stress corrosion cracking in nuclear structural materials at initial stage [J]. Rare Met. Mater. Eng., 2018, 47: 2365
[15] Qu X J. Stress corrosion cracking behavior research of 316L stainless steel in saturated CO2+Cl-+H2S [D]. Qingdao: China University of Petroleum (East China), 2016
[15] (曲效建. 316L不锈钢在饱和CO2+Cl-+H2S介质环境中的应力腐蚀行为研究 [D]. 青岛: 中国石油大学 (华东), 2016)
[16] Liu Z Y, Li X G, Cheng Y F. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization [J]. Corros. Sci., 2012, 55: 54
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[4] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[11] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[14] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[15] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.