Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 143-151     CSTR: 32134.14.1005.4537.2022.277      DOI: 10.11902/1005.4537.2022.277
  研究报告 本期目录 | 过刊浏览 |
2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为
贾静焕1, 刘明1(), 骆晨1, 孙志华1, 赵明亮1, 李晓刚2
1 中国航发北京航空材料研究院 中国航空发动机集团航空材料先进腐蚀与防护重点实验室 北京 100095
2 北京科技大学 新材料技术研究院 北京 100083
Corrosion and Aging Behavior of 2A97 Al-Li Alloy with Typical Protective Coatings in Tropical Marine Atmosphere Environment
JIA Jinghuan1, LIU Ming1(), LUO Chen1, SUN Zhihua1, ZHAO Mingliang1, LI Xiaogang2
1 AECC Key Laboratory of Advanced Corrosion and Protection of Aeronautical Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(37331 KB)   HTML
摘要: 

将2A97铝锂合金典型防护涂层在万宁自然环境试验站进行户外暴露,并采用表面及截面形貌观察、红外光谱、电化学阻抗谱等方法,研究2A97铝锂合金涂层试样在热带海洋大气环境下的腐蚀老化行为规律及机理。结果表明:包含底漆+面漆的涂层1在暴露2.5 a内,表面有微孔洞形成,涂层和阳极氧化层较为完整,合金基体未腐蚀;只有底漆的涂层2在暴露1 a时,涂层形成大量微裂纹,并且局部区域发生剥落,且随暴露时间延长,阳极氧化层减薄,合金基体遭受腐蚀。与只有底漆的单涂层相比,底漆+面漆双层涂层具有较低的失光率和色差,抗老化性能更优异。涂层1暴露不同周期后,均表现为一个容抗弧,其腐蚀老化进程主要由水和氧的扩散速率控制。涂层2暴露1 a后,电解质侵入到涂层/基体界面处,基体发生腐蚀反应,随暴露时间延长,涂层开始剥落,主要表现为铝锂合金基体的腐蚀,其腐蚀老化速率主要由电化学过程控制。

关键词 2A97铝锂合金防护涂层热带海洋大气腐蚀老化    
Abstract

Two typical protective coatings applied on 2A97 Al-Li alloy were exposed in Wanning natural environment test station in Hainan island, and their corrosion and aging behavior were studied by means of surface and cross section morphology observation, infrared spectroscopy, electrochemical impedance spectroscopy and other methods. The 2A97 Al-Li alloy was firstly subjected to anodic oxidation treatment, then applying either two layer coating of primer+topcoat (coating 1) or mono layered coating of only primer (coating 2). The results show that after 2.5 a exposure, the coating 1 keeps intact i.e. the coating and anodized layer are relatively complete, and the alloy matrix is not corroded. In the contrast, a large number of micro cracks emerge in coating 2 after 1 a exposure, and even spallation can be observed in some local areas of the coating, meanwhile, the anodic oxidation layer becomes thinner and the alloy matrix suffers from corrosion with the extension of exposure time. Compared with the coating 2, the coating 1 has better aging resistance, showing lower rate of light loss and chromatic aberration. The impedance spectrum of coating 1 consists of a capacitive reactance arc after different periods of exposure, which means that the corrosion process of coating 1 is mainly controlled by the inward diffusion of water and oxygen. While the electrolyte invades the interface between coating 2 and the matrix after 1 a exposure, and the coating begins to peel off with the extension of exposure time, which is mainly manifested as the corrosion of Al-Li alloy matrix, and the corrosion rate is controlled by the electrochemical process.

Key words2A97 Al-Li alloy    protective coating    tropical Marine atmosphere    corrosion    aging
收稿日期: 2022-09-08      32134.14.1005.4537.2022.277
ZTFLH:  TG172  
基金资助:国防科技工业技术基础“十三五”科研项目(KH61180524)
通讯作者: 刘明,E-mail:luminousa@126.com,研究方向为材料腐蚀评价
Corresponding author: LIU Ming, E-mail: luminousa@126.com
作者简介: 贾静焕,女,1989年生,博士,工程师

引用本文:

贾静焕, 刘明, 骆晨, 孙志华, 赵明亮, 李晓刚. 2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 143-151.
JIA Jinghuan, LIU Ming, LUO Chen, SUN Zhihua, ZHAO Mingliang, LI Xiaogang. Corrosion and Aging Behavior of 2A97 Al-Li Alloy with Typical Protective Coatings in Tropical Marine Atmosphere Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 143-151.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.277      或      https://www.jcscp.org/CN/Y2023/V43/I1/143

图1  涂层1和涂层2试样万宁自然环境试验站暴晒不同周期后的宏观形貌
图2  涂层1和涂层2试样万宁自然环境试验站暴晒不同周期后的表面微观形貌
图3  涂层1试样万宁自然环境试验站暴晒不同周期后的截面形貌
图4  涂层2试样万宁自然环境试验站暴晒不同周期后的截面形貌
图5  涂层1和涂层2万宁自然环境试验站暴晒不同周期后的色差和失光率变化
Coating Period / a ΔL Δa Δb Chromatic
aberration
Coating 1 0.5 -7.56 4.84 -8.56 12.44
1 -5.48 5.13 -9.18 11.86
2 -6.35 5.09 -7.96 11.39
2.5 -6.23 5.15 -8.51 11.74
Coating 2 0.5 4.45 5.33 16.79 18.18
1 5.3 5.43 16.63 18.3
2 21.61 13.05 25.47 35.88
2.5 22.21 12.22 26.28 36.53
表1  涂层1和涂层2暴露后的颜色数据
图6  涂层1和涂层2万宁自然环境试验站暴晒不同周期后的红外光谱分析
图7  涂层1和涂层2万宁自然环境试验站暴晒不同周期后电化学阻抗谱
Period / a Rs / Ω·cm2 Qc / Ω-1·cm-2s-n nc Rc / Ω·cm2
0.5 16090 1.94×10-9 0.9408 1.03×1011
1 3146 2.12×10-9 0.9646 2.84×1011
2 1541 2.86×10-9 0.9512 1.27×1010
2.5 2033 3.38×10-9 0.9539 1.44×109
表2  涂层1 EIS拟合结果
图8  不同腐蚀阶段EIS拟合电路
Period / a Rs / Ω·cm2 Qc (Qp) / Ω-1·cm-2s-n nc (np) Rc (Rp) / Ω·cm2 Qdl / Ω-1·cm-2s-n ndl Rct / Ω·cm2 W / Ω·cm2
0.5 6213 1.31×10-7 0.6599 8.41×107 --- --- --- ---
1 6746 5.12×10-8 0.8067 2.05×107 3.82×10-8 0.7126 2.44×108 ---
2 1000 3.70×10-7 0.684 1.05×104 2.53×10-5 0.7708 7.81×105 6.22×106
2.5 10 6.79×10-8 0.819 1.14×104 2.20×10-5 0.4982 1.92×106 ---
表3  涂层2 EIS拟合结果
[1] Kuang Q B, Wang R C, Peng C Q, et al. Progress on preparation and obdurability of aluminum-lithium alloy[J/OL]. Chin. J. Nonferrous Met., 1-30[2022-04-27]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220125.1814.003.html
[1] ( 邝泉波, 王日初, 彭超群. 铝锂合金制备及强韧化研究进展[J/OL]. 中国有色金属学报, 1-30[2022-04-27]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220125.1814.003.html)
[2] Li J F, Chen Y L, Ma Y L, et al. Basic research and application technology development of Al-Li alloy in China[J]. Aerosp. Mater. Technol., 2021, 51(4): 37
[2] ( 李劲风, 陈永来, 马云龙. 国内铝锂合金基础研究及应用技术开发[J]. 宇航材料工艺, 2021, 51(4): 37)
[3] Gao C B. Characteristics of Al-Li alloy and its application prospect in helicopter[J]. Sci. Technol. Innovation, 2020, (29): 5
[3] ( 高长宝. 铝锂合金的特点及在直升机上的应用展望[J]. 科学技术创新, 2020, (29): 5)
[4] Li J J, Xu J H, Huang L, et al. Research progress on thermomechanical treatment process for Al-Li alloy[J]. Forg. Stamp. Technol., 2021, 46(11): 1
doi: 10.13330/j.issn.1000-3940.2021.11.001
[4] ( 李建军, 徐佳辉, 黄亮. 铝锂合金形变热处理工艺研究进展[J]. 锻压技术, 2021, 46(11): 1)
doi: 10.13330/j.issn.1000-3940.2021.11.001
[5] Meng X M, Ma Y L, Huang W J, et al. Microstructure of the new aluminium lithium alloys and its influences on localized corrosion[J]. Mater. Rev., 2014, 28(13): 82
[5] ( 孟晓敏, 麻彦龙, 黄伟九. 新型铝锂合金的微观组织及其在局部腐蚀中的作用[J]. 材料导报, 2014, 28(13): 82)
[6] Niu J T. Surface integrity and corrosion behavior of milled Al-Li Alloy 2A97[D]. Ji'nan: Shandong University, 2020
[6] ( 牛金涛. 铝锂合金2A97铣削加工表面完整性及耐腐蚀性能研究[D]. 济南: 山东大学, 2020)
[7] Yi Y N, Ma Y L, Luo X X, et al. Review on Effect of alloy phases on localized corrosion of new generation aluminum-lithium alloys[J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2017, 31(4): 50
[7] 易雅楠, 麻彦龙, 罗肖肖. 合金相对新型铝锂合金局部腐蚀行为的影响研究进展[J]. 重庆理工大学学报 (自然科学), 2017, 31(4): 50)
[8] Zhang H B, Luo G Y, Yao K, et al. Study on aging performance of acrylic polyurethane coatings in different natural environment[J]. Thermosetting Resin, 2020, 35(5): 20
[8] ( 张洪彬, 罗高义, 姚珂. 丙烯酸聚氨酯涂层不同自然环境下老化性能研究[J]. 热固性树脂, 2020, 35(5): 20)
[9] Luo L Z, Xiao Y, Su Y, et al. Effects of southeast coastal atmospheric environment on aging behavior of polyurethane coating[J]. Equip. Environ. Eng., 2015, 12(6): 42
[9] ( 罗来正, 肖勇, 苏艳. 东南沿海气候条件对聚氨酯涂层老化行为影响研究[J]. 装备环境工程, 2015, 12(6): 42)
[10] Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
[10] ( 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42: 403)
doi: 10.11902/1005.4537.2021.165
[11] Luo C, Cai J P, Xu G X, et al. Equivalent degradation of aviation organic coating during indoor accelerated testing and outdoor exposure[J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 1750
[11] ( 骆晨, 蔡健平, 许广兴. 航空有机涂层在户内加速试验与户外暴露中的损伤等效关系[J]. 航空学报, 2014, 35: 1750)
doi: 10.7527/S1000-6893.2014.0007
[12] Lin K, Dong M F, Liu G H. Study on hard anodized film properties and corrosion mechanism of 6061 aluminum alloy[J]. Light Ind. Sci. Technol., 2020, 36(12): 17
[12] ( 林康, 董铭锋, 刘刚华. 6061铝合金硬质阳极氧化膜性能及腐蚀机理分析[J]. 轻工科技, 2020, 36(12): 17)
[13] Deng P C, Zhong J, Wang K, et al. Important influential factor for corrosion of high-altitude marine engineering equipment in atmosphere-chloride ion deposition rate[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 474
[13] ( 邓培昌, 钟杰, 王坤. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40: 474)
doi: 10.11902/1005.4537.2019.206
[14] Zhao Q Y, Jia Z H, Zhao J B, et al. Corrosion behavior of anodized 6061 aluminum alloy in industrial-marine atmosphere in Qingdao after long-term exposure[J]. Chin. J. Nonferrous Met., 2020, 30: 1249
doi: 10.1016/S1003-6326(20)65293-1
[14] ( 赵起越, 贾志浩, 赵晋斌. 阳极氧化6061铝合金在工业海洋大气环境长周期暴晒时的腐蚀行为[J]. 中国有色金属学报, 2020, 30: 1249)
[15] Dong C F, Xiao K, Xu L, et al. Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques[J]. Rare Met. Mater. Eng., 2011, 40(suppl.2): 275
[16] Zhao Y, Li X. Progress in research on aging mechanism of polymer coating[J]. Synth. Mater. Aging Appl., 2014, 43(6): 57
[16] ( 赵苑, 李欣. 高分子涂层老化机理研究进展分析[J]. 合成材料老化与应用, 2014, 43(6): 57)
[17] Zhang L. Study on failure process of several organci coating under wet/dry cycle condition[D]. Beijing: Beijing University of Chemical Technology, 2011
[17] ( 张亮. 几种有机涂层体系在干湿交替环境下失效过程的研究[D]. 北京: 北京化工大学, 2011)
[18] Tan X M, Wang P, Wang D, et al. Accelerated aging dynamic rules of aeronautic organic coating based on electrochemical impedance[J]. Equip. Environ. Eng., 2017, 14(1): 5
[18] ( 谭晓明, 王鹏, 王德. 基于电化学阻抗的航空有机涂层加速老化动力学规律研究[J]. 装备环境工程, 2017, 14(1): 5)
[19] Margarit-Mattos I C P. EIS and organic coatings performance: revisiting some key points[J]. Electrochim. Acta, 2020, 354: 136725
doi: 10.1016/j.electacta.2020.136725
[20] Qian A, Wang P, Tan X M, et al. Current status and key technology of research on aging faliure of organic coating[J]. Mech. Sci. Technol. Aerosp. Eng., 2017, 36(suppl.1): 84
[20] ( 钱昂, 王鹏, 谭晓明. 有机涂层老化失效研究及关键技术问题[J]. 机械科学与技术, 2017, 36 (增刊1): 84)
[21] Sun Z H, Zhang N, Cai J P, et al. Electrochemical impedance varieties of zinc yellow polypropylene coated aluminum alloy used in aircraft during the accelerated degradation test[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 746
[21] ( 孙志华, 章妮, 蔡健平. 航空铝合金涂层体系加速老化试验前后电化学阻抗变化[J]. 航空学报, 2008, 29: 746)
[22] Luo C, Sun Z H, Tang Z H, et al. Comparison of atmospheric corrosivity of 2297-T87 Al-Cu-Li alloy[J]. Equip. Environ. Eng., 2020, 17(5): 10
[22] ( 骆晨, 孙志华, 汤智慧. 2297-T87铝锂合金用于大气腐蚀性的比较[J]. 装备环境工程, 2020, 17(5): 10)
[23] Zhong Y, Su Y, Luo L Z, et al. Corrosion behavior of 7B50 aluminum alloy in four typical atmospheric environments[J]. Equip. Environ. Eng., 2021, 18(11): 143
[23] ( 钟勇, 苏艳, 罗来正. 四种典型大气环境下7B50铝合金的腐蚀行为研究[J]. 装备环境工程, 2021, 18(11): 143)
[24] Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
[24] ( 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 507)
doi: 10.11902/1005.4537.2021.120
[25] Zhang Z, Gao J, He H, et al. Influence of atmospheric environmental factors on weathering performance of aviation organic coatings[J]. Paint Coat. Ind., 2021, 51(6): 57
[25] ( 张钊, 高瑾, 贺辉. 大气环境因素对航空有机涂层耐老化性影响的分析[J]. 涂料工业, 2021, 51(6): 57)
[26] Zhao Q C, Luo L Z, Li X F, et al. Corrosion behavior of 7A85 aluminum alloy in two typical atmospheric environments[J]. Equip. Environ. Eng., 2020, 17(7): 70
[26] ( 赵全成, 罗来正, 黎小锋. 两种典型大气环境下7A85铝合金的腐蚀行为研究[J]. 装备环境工程, 2020, 17(7): 70)
[27] Bai Z H, Huang Y H, Li X G, et al. Environmental corrosion in industrial-marine atmosphere at Qingdao of 7050 al-alloy anodized in boric-and sulfuric-acid electrolyte[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 580
[27] ( 白子恒, 黄运华, 李晓刚. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36: 580)
doi: 10.11902/1005.4537.2016.169
[28] Zhang J T. Electrochemical investigation on water transport behavior of organic coatings and degradation mechanism of coated-metals[D]. Hangzhou: Zhejiang University, 2005
[28] ( 张金涛. 有机涂层中水传输与涂层金属失效机制的电化学研究[D]. 杭州: 浙江大学, 2005)
[29] Su Y, Shu C, Luo L Z, et al. Weathering mechanism and electrochemical characterization of aircraft coating[J]. Surf. Technol., 2011, 40(6): 18
[29] ( 苏艳, 舒畅, 罗来正. 航空有机涂层的老化失效规律和电化学表征[J]. 表面技术, 2011, 40(6): 18)
[30] Xiang J Y, Liu C X, Ma F G. Research progress on high performance silicone-modified phenolic resin[J]. Silicone Mater., 2019, 33: 71
[30] ( 向靖宇, 刘春霞, 马凤国. 高性能有机硅改性酚醛树脂的研究进展[J]. 有机硅材料, 2019, 33: 71)
[31] Zheng Y Y, Liu X Y, Pan Y Z. Synthesis and properties of SiO2/silicone/cardanol-aldehyde resin composite coating[J]. J. Quanzhou Normal Univ., 2019, 37(2): 1
[31] ( 郑燕玉, 刘小英, 潘亦真. SiO2/有机硅/腰果酚醛树脂复合涂料的制备与性能[J]. 泉州师范学院学报, 2019, 37(2): 1)
[32] Fu H B, Liu X R, Sun Y, et al. Corrosion resistance of epoxy resin/recrystallized silicon carbide composite[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 373
[32] ( 付海波, 刘晓茹, 孙媛. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40: 373)
doi: 10.11902/1005.4537.2019.109
[33] Lu Y L. Ageing mechanisms and influencing factors for organic coatings used in plateau environment[J]. Paint Coat. Ind., 2012, 42(4): 12
[33] ( 卢言利. 有机涂层高原环境影响参数分析及老化机理研究[J]. 涂料工业, 2012, 42(4): 12)
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[4] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[5] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[6] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[7] 张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[8] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[9] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[10] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[11] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[12] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[13] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[14] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[15] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.