|
|
2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为 |
贾静焕1, 刘明1( ), 骆晨1, 孙志华1, 赵明亮1, 李晓刚2 |
1 中国航发北京航空材料研究院 中国航空发动机集团航空材料先进腐蚀与防护重点实验室 北京 100095 2 北京科技大学 新材料技术研究院 北京 100083 |
|
Corrosion and Aging Behavior of 2A97 Al-Li Alloy with Typical Protective Coatings in Tropical Marine Atmosphere Environment |
JIA Jinghuan1, LIU Ming1( ), LUO Chen1, SUN Zhihua1, ZHAO Mingliang1, LI Xiaogang2 |
1 AECC Key Laboratory of Advanced Corrosion and Protection of Aeronautical Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
贾静焕, 刘明, 骆晨, 孙志华, 赵明亮, 李晓刚. 2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 143-151.
JIA Jinghuan,
LIU Ming,
LUO Chen,
SUN Zhihua,
ZHAO Mingliang,
LI Xiaogang.
Corrosion and Aging Behavior of 2A97 Al-Li Alloy with Typical Protective Coatings in Tropical Marine Atmosphere Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 143-151.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.277
或
https://www.jcscp.org/CN/Y2023/V43/I1/143
|
[1] |
Kuang Q B, Wang R C, Peng C Q, et al. Progress on preparation and obdurability of aluminum-lithium alloy[J/OL]. Chin. J. Nonferrous Met., 1-30[2022-04-27]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220125.1814.003.html
|
[1] |
( 邝泉波, 王日初, 彭超群. 铝锂合金制备及强韧化研究进展[J/OL]. 中国有色金属学报, 1-30[2022-04-27]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220125.1814.003.html)
|
[2] |
Li J F, Chen Y L, Ma Y L, et al. Basic research and application technology development of Al-Li alloy in China[J]. Aerosp. Mater. Technol., 2021, 51(4): 37
|
[2] |
( 李劲风, 陈永来, 马云龙. 国内铝锂合金基础研究及应用技术开发[J]. 宇航材料工艺, 2021, 51(4): 37)
|
[3] |
Gao C B. Characteristics of Al-Li alloy and its application prospect in helicopter[J]. Sci. Technol. Innovation, 2020, (29): 5
|
[3] |
( 高长宝. 铝锂合金的特点及在直升机上的应用展望[J]. 科学技术创新, 2020, (29): 5)
|
[4] |
Li J J, Xu J H, Huang L, et al. Research progress on thermomechanical treatment process for Al-Li alloy[J]. Forg. Stamp. Technol., 2021, 46(11): 1
doi: 10.13330/j.issn.1000-3940.2021.11.001
|
[4] |
( 李建军, 徐佳辉, 黄亮. 铝锂合金形变热处理工艺研究进展[J]. 锻压技术, 2021, 46(11): 1)
doi: 10.13330/j.issn.1000-3940.2021.11.001
|
[5] |
Meng X M, Ma Y L, Huang W J, et al. Microstructure of the new aluminium lithium alloys and its influences on localized corrosion[J]. Mater. Rev., 2014, 28(13): 82
|
[5] |
( 孟晓敏, 麻彦龙, 黄伟九. 新型铝锂合金的微观组织及其在局部腐蚀中的作用[J]. 材料导报, 2014, 28(13): 82)
|
[6] |
Niu J T. Surface integrity and corrosion behavior of milled Al-Li Alloy 2A97[D]. Ji'nan: Shandong University, 2020
|
[6] |
( 牛金涛. 铝锂合金2A97铣削加工表面完整性及耐腐蚀性能研究[D]. 济南: 山东大学, 2020)
|
[7] |
Yi Y N, Ma Y L, Luo X X, et al. Review on Effect of alloy phases on localized corrosion of new generation aluminum-lithium alloys[J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2017, 31(4): 50
|
[7] |
易雅楠, 麻彦龙, 罗肖肖. 合金相对新型铝锂合金局部腐蚀行为的影响研究进展[J]. 重庆理工大学学报 (自然科学), 2017, 31(4): 50)
|
[8] |
Zhang H B, Luo G Y, Yao K, et al. Study on aging performance of acrylic polyurethane coatings in different natural environment[J]. Thermosetting Resin, 2020, 35(5): 20
|
[8] |
( 张洪彬, 罗高义, 姚珂. 丙烯酸聚氨酯涂层不同自然环境下老化性能研究[J]. 热固性树脂, 2020, 35(5): 20)
|
[9] |
Luo L Z, Xiao Y, Su Y, et al. Effects of southeast coastal atmospheric environment on aging behavior of polyurethane coating[J]. Equip. Environ. Eng., 2015, 12(6): 42
|
[9] |
( 罗来正, 肖勇, 苏艳. 东南沿海气候条件对聚氨酯涂层老化行为影响研究[J]. 装备环境工程, 2015, 12(6): 42)
|
[10] |
Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
[10] |
( 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42: 403)
doi: 10.11902/1005.4537.2021.165
|
[11] |
Luo C, Cai J P, Xu G X, et al. Equivalent degradation of aviation organic coating during indoor accelerated testing and outdoor exposure[J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 1750
|
[11] |
( 骆晨, 蔡健平, 许广兴. 航空有机涂层在户内加速试验与户外暴露中的损伤等效关系[J]. 航空学报, 2014, 35: 1750)
doi: 10.7527/S1000-6893.2014.0007
|
[12] |
Lin K, Dong M F, Liu G H. Study on hard anodized film properties and corrosion mechanism of 6061 aluminum alloy[J]. Light Ind. Sci. Technol., 2020, 36(12): 17
|
[12] |
( 林康, 董铭锋, 刘刚华. 6061铝合金硬质阳极氧化膜性能及腐蚀机理分析[J]. 轻工科技, 2020, 36(12): 17)
|
[13] |
Deng P C, Zhong J, Wang K, et al. Important influential factor for corrosion of high-altitude marine engineering equipment in atmosphere-chloride ion deposition rate[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 474
|
[13] |
( 邓培昌, 钟杰, 王坤. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40: 474)
doi: 10.11902/1005.4537.2019.206
|
[14] |
Zhao Q Y, Jia Z H, Zhao J B, et al. Corrosion behavior of anodized 6061 aluminum alloy in industrial-marine atmosphere in Qingdao after long-term exposure[J]. Chin. J. Nonferrous Met., 2020, 30: 1249
doi: 10.1016/S1003-6326(20)65293-1
|
[14] |
( 赵起越, 贾志浩, 赵晋斌. 阳极氧化6061铝合金在工业海洋大气环境长周期暴晒时的腐蚀行为[J]. 中国有色金属学报, 2020, 30: 1249)
|
[15] |
Dong C F, Xiao K, Xu L, et al. Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques[J]. Rare Met. Mater. Eng., 2011, 40(suppl.2): 275
|
[16] |
Zhao Y, Li X. Progress in research on aging mechanism of polymer coating[J]. Synth. Mater. Aging Appl., 2014, 43(6): 57
|
[16] |
( 赵苑, 李欣. 高分子涂层老化机理研究进展分析[J]. 合成材料老化与应用, 2014, 43(6): 57)
|
[17] |
Zhang L. Study on failure process of several organci coating under wet/dry cycle condition[D]. Beijing: Beijing University of Chemical Technology, 2011
|
[17] |
( 张亮. 几种有机涂层体系在干湿交替环境下失效过程的研究[D]. 北京: 北京化工大学, 2011)
|
[18] |
Tan X M, Wang P, Wang D, et al. Accelerated aging dynamic rules of aeronautic organic coating based on electrochemical impedance[J]. Equip. Environ. Eng., 2017, 14(1): 5
|
[18] |
( 谭晓明, 王鹏, 王德. 基于电化学阻抗的航空有机涂层加速老化动力学规律研究[J]. 装备环境工程, 2017, 14(1): 5)
|
[19] |
Margarit-Mattos I C P. EIS and organic coatings performance: revisiting some key points[J]. Electrochim. Acta, 2020, 354: 136725
doi: 10.1016/j.electacta.2020.136725
|
[20] |
Qian A, Wang P, Tan X M, et al. Current status and key technology of research on aging faliure of organic coating[J]. Mech. Sci. Technol. Aerosp. Eng., 2017, 36(suppl.1): 84
|
[20] |
( 钱昂, 王鹏, 谭晓明. 有机涂层老化失效研究及关键技术问题[J]. 机械科学与技术, 2017, 36 (增刊1): 84)
|
[21] |
Sun Z H, Zhang N, Cai J P, et al. Electrochemical impedance varieties of zinc yellow polypropylene coated aluminum alloy used in aircraft during the accelerated degradation test[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 746
|
[21] |
( 孙志华, 章妮, 蔡健平. 航空铝合金涂层体系加速老化试验前后电化学阻抗变化[J]. 航空学报, 2008, 29: 746)
|
[22] |
Luo C, Sun Z H, Tang Z H, et al. Comparison of atmospheric corrosivity of 2297-T87 Al-Cu-Li alloy[J]. Equip. Environ. Eng., 2020, 17(5): 10
|
[22] |
( 骆晨, 孙志华, 汤智慧. 2297-T87铝锂合金用于大气腐蚀性的比较[J]. 装备环境工程, 2020, 17(5): 10)
|
[23] |
Zhong Y, Su Y, Luo L Z, et al. Corrosion behavior of 7B50 aluminum alloy in four typical atmospheric environments[J]. Equip. Environ. Eng., 2021, 18(11): 143
|
[23] |
( 钟勇, 苏艳, 罗来正. 四种典型大气环境下7B50铝合金的腐蚀行为研究[J]. 装备环境工程, 2021, 18(11): 143)
|
[24] |
Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
|
[24] |
( 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 507)
doi: 10.11902/1005.4537.2021.120
|
[25] |
Zhang Z, Gao J, He H, et al. Influence of atmospheric environmental factors on weathering performance of aviation organic coatings[J]. Paint Coat. Ind., 2021, 51(6): 57
|
[25] |
( 张钊, 高瑾, 贺辉. 大气环境因素对航空有机涂层耐老化性影响的分析[J]. 涂料工业, 2021, 51(6): 57)
|
[26] |
Zhao Q C, Luo L Z, Li X F, et al. Corrosion behavior of 7A85 aluminum alloy in two typical atmospheric environments[J]. Equip. Environ. Eng., 2020, 17(7): 70
|
[26] |
( 赵全成, 罗来正, 黎小锋. 两种典型大气环境下7A85铝合金的腐蚀行为研究[J]. 装备环境工程, 2020, 17(7): 70)
|
[27] |
Bai Z H, Huang Y H, Li X G, et al. Environmental corrosion in industrial-marine atmosphere at Qingdao of 7050 al-alloy anodized in boric-and sulfuric-acid electrolyte[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 580
|
[27] |
( 白子恒, 黄运华, 李晓刚. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36: 580)
doi: 10.11902/1005.4537.2016.169
|
[28] |
Zhang J T. Electrochemical investigation on water transport behavior of organic coatings and degradation mechanism of coated-metals[D]. Hangzhou: Zhejiang University, 2005
|
[28] |
( 张金涛. 有机涂层中水传输与涂层金属失效机制的电化学研究[D]. 杭州: 浙江大学, 2005)
|
[29] |
Su Y, Shu C, Luo L Z, et al. Weathering mechanism and electrochemical characterization of aircraft coating[J]. Surf. Technol., 2011, 40(6): 18
|
[29] |
( 苏艳, 舒畅, 罗来正. 航空有机涂层的老化失效规律和电化学表征[J]. 表面技术, 2011, 40(6): 18)
|
[30] |
Xiang J Y, Liu C X, Ma F G. Research progress on high performance silicone-modified phenolic resin[J]. Silicone Mater., 2019, 33: 71
|
[30] |
( 向靖宇, 刘春霞, 马凤国. 高性能有机硅改性酚醛树脂的研究进展[J]. 有机硅材料, 2019, 33: 71)
|
[31] |
Zheng Y Y, Liu X Y, Pan Y Z. Synthesis and properties of SiO2/silicone/cardanol-aldehyde resin composite coating[J]. J. Quanzhou Normal Univ., 2019, 37(2): 1
|
[31] |
( 郑燕玉, 刘小英, 潘亦真. SiO2/有机硅/腰果酚醛树脂复合涂料的制备与性能[J]. 泉州师范学院学报, 2019, 37(2): 1)
|
[32] |
Fu H B, Liu X R, Sun Y, et al. Corrosion resistance of epoxy resin/recrystallized silicon carbide composite[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 373
|
[32] |
( 付海波, 刘晓茹, 孙媛. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40: 373)
doi: 10.11902/1005.4537.2019.109
|
[33] |
Lu Y L. Ageing mechanisms and influencing factors for organic coatings used in plateau environment[J]. Paint Coat. Ind., 2012, 42(4): 12
|
[33] |
( 卢言利. 有机涂层高原环境影响参数分析及老化机理研究[J]. 涂料工业, 2012, 42(4): 12)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|