Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1349-1357     CSTR: 32134.14.1005.4537.2022.347      DOI: 10.11902/1005.4537.2022.347
  研究报告 本期目录 | 过刊浏览 |
组织老化对P92钢在超临界水中氧化行为影响研究
於琛钧, 张天翼, 张乃强, 朱忠亮()
华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206
Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water
YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang()
Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
引用本文:

於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
Chenjun YU, Tianyi ZHANG, Naiqiang ZHANG, Zhongliang ZHU. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1349-1357.

全文: PDF(20095 KB)   HTML
摘要: 

实验研究了P92耐热钢的组织老化规律及其在超临界水环境中的氧化行为,讨论了微观组织老化对其腐蚀行为的影响机理。在800 ℃下进行了200和400 h的老化实验,之后在600 ℃、25 MPa超临界水环境下进行了最长1500 h腐蚀实验。利用扫描电镜 (SEM)、透射电镜 (TEM)、X射线衍射 (XRD) 对金相组织、氧化膜微观形貌、物相成分等进行了分析。结果表明:组织老化特征表现为板条马氏体粗化、M23C6的析出熟化及亚晶的形成和长大。在超临界水中氧化动力学曲线均介于抛物线和立方规律之间,氧化增重随老化时间的增加而增加;氧化物主要为Fe3O4、(Fe,Cr)3O4以及Cr2O3;与未经老化的试样相比,组织老化后的试样更容易出现裂纹和剥落现象。

关键词 P92钢组织老化超临界水高温氧化氧化机理    
Abstract

Ferritic-martensitic steel P92 was themally aged at 800 °C for 200 and 400 h, respectively. Then corrosion behavior of the aged P92 steels was investigated in supercritical water at 600 °C, 25 MPa up to 1500 h. The microstructure, oxidation kinetics of the steels, morphology and phase composition of oxide scales were characterized by means of SEM, TEM and XRD. The results indicate that after thermal ageing at 800 ℃, the P92 steel presented microstructure composed of coarsened martensitic lath, Ostwald ripening of M23C6 carbides and sub-grains. Furthermore, the oxidation kinetics curves of the aged P92 steels at 600 ℃ are between parabolic and cubic curves, while the weight gain increased with the increasing ageing time. The oxide scales are composed of Fe3O4, (Fe,Cr)3O4 and Cr2O3. It is also discovered that there is more cracks on oxide scales of the aged steels, which led to spallation of oxide scales, whereas no signs of spallation were found on the not aged steel.

Key wordsP92 steel    thermal aging    supercritical water    high-temperature oxidation    oxidation mechanism
收稿日期: 2022-11-08      32134.14.1005.4537.2022.347
ZTFLH:  TK245  
基金资助:国家重点研发计划(2022YFB4100403)
通讯作者: 朱忠亮,E-mail: zhzl@ncepu.edu.cn,研究方向为电厂高温受热面材料的腐蚀与防护、高温材料性能与寿命评估
Corresponding author: ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn
作者简介: 於琛钧,男,1998年生,硕士生
图1  P92钢析出相和基体相的质量分数与温度的关系
图2  退火态P92钢在未经时效以及经800 ℃下200和400 h时效后的SEM金相形貌
图3  析出相尺寸分布
图4  P92钢时效后微观结构TEM像
图5  碳化物的衍射斑和化学组成
图6  不同老化程度的P92钢在600 ℃超临界水环境下氧化增重与时间关系
图7  经不同时间时效处理的P92钢在600 ℃超临界水环境中氧化不同时间后的XRD谱
图8  不同老化程度P92钢在600 ℃超临界水中氧化不同时间后的氧化膜表面形貌
图9  P92钢在超临界水中氧化500 h后氧化膜截面形貌和EDS线扫
图10  P92钢在超临界水中氧化1500 h后氧化膜截面形貌和EDS线扫
图11  不同时间时效处理后的P92钢在SCW中氧化500和1500 h后各氧化层占比
图12  老化P92钢在超临界水中氧化1500 h后氧化膜表面裂纹形貌
图13  老化200 h的P92钢在超临界水中氧化1500 h后剥落区形貌
图14  老化400 h的P92钢在超临界水中暴露1500 h后氧化膜截面的裂纹形貌
1 Liu Y T, Chen Z Y, Zhu Z L, et al. SCC susceptibility of 2.25Cr1-Mo steel and its weld joints in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 647
1 刘宇桐, 陈震宇, 朱忠亮 等. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 647
doi: 10.11902/1005.4537.2021.157
2 Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700 °C [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
2 朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700 °C超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
3 Chen D L, Wang H Z, Hou S F, et al. Microstructural evolution of 12%Cr martensite steel weld joint at high temperature for 45000 hours service [J]. Thermal Power Generat., 2014, 43(1): 69
3 陈德龙, 王弘喆, 侯淑芳 等. 12%Cr马氏体钢焊缝金属45000 h高温服役老化分析 [J]. 热力发电, 2014, 43(1): 69
4 Yang X, Liao B, Xiao F R, et al. Ripening behavior of M23C6 carbides in P92 steel during aging at 800 °C [J]. J. Iron Steel Res. Int., 2017, 24: 858
doi: 10.1016/S1006-706X(17)30127-9
5 Saini N, Pandey C, Mahapatra M M. Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature [J]. Mater. Sci. Eng., 2017, 688A: 250
6 Żurek J, Wessel E, Niewolak L, et al. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550-650 °C [J]. Corros. Sci., 2004, 46: 2301
doi: 10.1016/j.corsci.2004.01.010
7 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
8 Zhu Z L, Xu H, Jiang D F, et al. The role of dissolved oxygen in supercritical water in the oxidation of ferritic-martensitic steel [J]. J. Supercrit. Fluids, 2016, 108: 56
doi: 10.1016/j.supflu.2015.10.017
9 Zhang N Q, Zhu Z L, Lv F B, et al. Influence of exposure pressure on oxidation behavior of the ferritic–martensitic steel in steam and supercritical water [J]. Oxid. Met., 2016, 86: 113
doi: 10.1007/s11085-016-9624-1
10 Baltušnikas A, Grybėnas A, Kriūkienė R, et al. Evolution of crystallographic structure of M23C6 carbide under thermal aging of P91 steel [J]. J. Mater. Eng. Perform., 2019, 28: 1480
doi: 10.1007/s11665-019-03935-1
11 Bischoff J, Motta A T. Oxidation behavior of ferritic–martensitic and ODS steels in supercritical water [J]. J. Nucl. Mater., 2012, 424: 261
doi: 10.1016/j.jnucmat.2012.03.009
12 Li T P. The role of metallic grain boundary in high temperature oxidation [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 53
12 李铁藩. 金属晶界在高温氧化中的作用 [J]. 中国腐蚀与防护学报, 2002, 22: 53
13 Yang J Q. Thermodynamic simulation and analysis of X12CrMo-WVNbN10-1-1 steel precipitation based on JMatPro software [J]. J. Mater. Metall., 2021, 20: 74
13 杨佳奇. 基于JMatPro软件的X12CrMoWVNbN10-1-1钢析出相热力学模拟和分析 [J]. 材料与冶金学报, 2021, 20: 74
14 Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
14 刘 晓, 王 海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
15 DeHoff R T, Rhines F N. Quantitative Microscopy [M]. New York: McGraw-Hill, 1968: 75
16 Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, 387/389A: 565
17 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
18 Rhines F N, Wolf J S. The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel [J]. Metall. Trans., 1970, 1: 1701
19 Smyth D M. The Defect Chemistry of Metal Oxides [M]. Oxford: Oxford University Press, 2000
20 Tan L Z, Yang Y, Allen T R. Porosity prediction in supercritical water exposed ferritic/martensitic steel HCM12A [J]. Corros. Sci., 2006, 48: 4234
doi: 10.1016/j.corsci.2006.05.026
21 Gillot B, Ferriot J F, Dupré G, et al. Study of the oxidation kinetics of finely-divided magnetites. II - Influence of chromium substitution [J]. Mater. Res. Bull., 1976, 11: 843
doi: 10.1016/0025-5408(76)90124-0
22 Ueda M, Kawamura K, Maruyama T. Void formation in magnetite scale formed on iron at 823 K-elucidation by chemical potential distribution [J]. Mater. Sci. Forum, 2006, 522/523: 37
23 Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016
[1] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[2] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[3] 贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[4] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[5] 杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[6] 任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[7] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[8] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[9] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[10] 朱忠亮, 马辰昊, 李宇旸, 肖博, 袁小虎, 王硕, 徐鸿, 张乃强. 镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 655-661.
[11] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[12] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[13] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[14] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[15] 张洁, 曲积钰, 卢金玲, 刘倩, 罗兴锜. 亚临界/超临界水条件下镍基合金 (Incoloy800,825,625)的硫化腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898.