Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 152-158     CSTR: 32134.14.1005.4537.2022.023      DOI: 10.11902/1005.4537.2022.023
  研究报告 本期目录 | 过刊浏览 |
热处理工艺对Ti6321合金腐蚀行为的影响
张佳欢1,2, 崔中雨1(), 范林2, 孙明先2
1.中国海洋大学材料科学与工程学院 青岛 266100
2.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护国防科技重点实验室 青岛 266237
Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy
ZHANG Jiahuan1,2, CUI Zhongyu1(), FAN Lin2, SUN Mingxian2
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
全文: PDF(8271 KB)   HTML
摘要: 

采用金相及扫描电镜对Ti6321合金在不同热处理工艺条件下的微观组织进行分析;采用电化学测试研究了不同组织Ti6321合金在人工海水及5 mol/L盐酸溶液中的耐蚀性能;采用扫描电镜以及激光共聚焦显微镜分析不同组织的Ti6321试样在5 mol/L盐酸溶液中浸泡后的腐蚀特征。结果表明,在人工海水溶液中,3种组织的Ti6321合金均具有优异的钝化能力,耐蚀性相差不大;在5 mol/L盐酸溶液中,魏氏组织耐腐蚀性能最差,等轴组织次之,双态组织的耐腐蚀性能最佳。

关键词 Ti6321合金显微组织人工海水溶液盐酸溶液腐蚀行为    
Abstract

The effect of heat treatments on the microstructure and corrosion behavior of Ti6321 Ti-alloy in artificial seawater and 5 mol/L hydrochloric acid solution was investigated by means of XRD, electrochemical tests, SEM and confocal laser scanning microscope. Results show that the three groups of Ti6321 Ti-alloy, which has been subjected to three different heat treatments, exhibit excellent passivation ability in artificial seawater with more or less the same level of corrosion resistance. In 5 mol/L HCl solution, the corrosion resistance of the Ti6321 Ti-alloy with widmanstatten structure is the worst, followed by equiaxed ones, while the alloy with double structure presents the best corrosion resistance.

Key wordsTi6321 alloy    microstructure    artificial seawater solution    hydrochloric acid    corrosion resistance
收稿日期: 2022-01-19      32134.14.1005.4537.2022.023
ZTFLH:  TG172  
基金资助:国家自然科学基金(51931008)
作者简介: 张佳欢,女,1995年生,硕士生

引用本文:

张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
Jiahuan ZHANG, Zhongyu CUI, Lin FAN, Mingxian SUN. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 152-158.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.023      或      https://www.jcscp.org/CN/Y2023/V43/I1/152

图1  3种不同条件热处理后的 Ti6321合金的金相组织
图2  经不同条件热处理后的Ti6321合金的微观组织SEM观察
图3  经3种不同条件热处理后的Ti6321合金的XRD衍射谱
图4  经3种不同条件热处理后的钛合金在人工海水及5 mol/L盐酸溶液中的开路电位
图5  3种钛合金试样在人工海水及5 mol/L盐酸溶液的极化曲线
StructureEcorr / VSCEIp / A·cm-2Epit / VSCEIcorr / A·cm-2
Double-0.454.95×10-6---3.39×10-7
Equiaxed-0.525.11×10-6---4.49×10-6
Widmanstatten-0.576.21×10-6---5.80×10-6
表1  3种钛合金试样在人工海水中极化曲线的Tafel拟合结果
StructureEcorr / VSCEIp / A·cm-2Epit / VSCEEpp-Epit / VSCEIcorr / A·cm-2
Double-0.591.35×10-5----0.14-1.441.35×10-7
Equiaxed-0.621.71×10-5---0.15-1.371.29×10-6
Widmanstatten-0.651.74×10-40.950.18-0.882.68×10-6
表2  3种钛合金试样在5 mol/L盐酸溶液中的极化曲线的Tafel拟合结果
图6  3种钛合金试样在人工海水及5 mol/L盐酸溶液中的电化学阻抗谱
StructureRS / Ω·cm2Rp / Ω·cm2Qdl / Ω-1·cm-2·SnN
Double21.224.098×1054.013×10-50.93
Equiaxed21.033.671×1055.049×10-50.83
Widmanstatten242.527×1053.451×10-50.94
表3  3种钛合金试样在人工海水中阻抗谱拟合结果
StructureRs / Ω·cm2Qdl / Ω-1·cm-2·Snn1Rct / Ω·cm2Qf / Ω-1·cm-2·Snn2Rf / Ω·cm2
Double4.70.000280.90462.50.033630.85509.6
Equiaxed4.60.000330.88317.50.039680.83329.7
Widmanstatten6.60.000300.89290.10.043180.87235.6
表4  3种钛合金试样在5 mol/L盐酸溶液中的阻抗拟合结果
图7  在5 mol/L盐酸溶液中浸泡10 d后Ti6321合金试样CLSM表面形貌
图8  在5 mol/L盐酸溶液中浸泡10 d后Ti6321合金试样的SEM形貌
1 Zhou D D, Zeng W D, Xu J W, et al. Characterization of hot workability for a near alpha titanium alloy by integrating processing maps and constitutive relationship [J]. Adv. Eng. Mater., 2019, 21: 1801232
doi: 10.1002/adem.201801232
2 Lu L L, Zhang Y M, Zhang Z L, et al. Investigation on microstructure and texture evolution of Ti-6Al-3Nb-2Zr-1Mo alloy during hot deformation [J]. Mater. Res. Express, 2021, 8: 096520
3 Zhu D D, Dong D, Ni C Y, et al. Effect of heat treatment on microstructure evolution of Ti-48Al alloy solidified under high pressure [J]. Chin. J. Nonferrous Met., 2015, 25: 58
3 朱冬冬, 董多, 倪成员 等. 热处理对高压凝固Ti-48Al合金组织演变的影响 [J]. 中国有色金属学报, 2015, 25: 58
4 Dong J J, Fan L, Zhang H B, et al. Electrochemical performance of passive film formed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 595
doi: 10.1007/s40195-019-00958-4
5 Liu L. Influence of microstructures of titanium alloy on ultrasound parameters and corrosion-resistance [D]. Nanchang: Nanchang Hangkong University, 2011
5 刘俪. 钛合金显微组织对其超声参量及耐蚀性能的影响 [D]. 南昌: 南昌航空大学, 2011
6 Wang K, Zhao Y Q, Jia W J, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy [J]. Rare Met. Mat. Eng., 2021, 50: 552
6 王可, 赵永庆, 贾蔚菊 等. 热处理对Ti90钛合金显微组织及性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 552
7 Su B X, Wang B B, Luo L S, et al. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74: 143
doi: 10.1016/j.jmst.2020.08.066
8 Su B X, Luo L S, Wang B B, et al. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62: 234
doi: 10.1016/j.jmst.2020.05.058
9 Meng K. Study on corrosion behavior of TA31 alloy in hydrochloric acid solution [D]. Qinhuangdao: Yanshan University, 2019
9 孟康. TA31合金在盐酸溶液中的腐蚀行为研究 [D]. 秦皇岛: 燕山大学, 2019
10 Guo K, Meng K, Miao D, et al. Effect of annealing on microstructure and tensile properties of skew hot rolled Ti-6Al-3Nb-2Zr-1Mo alloy tube [J]. Mater. Sci. Eng., 2019, 766A: 138346
11 Xiong J H, Li S K, Gao F Y, et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by GTAW [J]. Mater. Sci. Eng., 2015, 640A: 419
12 Zhang S, Zhang Y Q, Zou Z Y, et al. The microstructure and tensile properties of additively manufactured Ti-6Al-2Zr-1Mo-1V with a trimodal microstructure obtained by multiple annealing heat treatment [J]. Mater. Sci. Eng., 2022, 831A: 142241
13 Cai D G, Zhao X T, Yang L, et al. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81: 13
doi: 10.1016/j.jmst.2021.01.015
14 Yan S K, Zheng D J, Wei J, et al. Electrochemical activation of passivated pure titanium in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 123
14 严少坤, 郑大江, 韦江 等. 钝性纯Ti在人工海水中的电化学活化行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 123
15 Prando D, Brenna A, Bolzoni F M, et al. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium [J]. J. Appl. Biomater. Funct. Mater., 2017, 15: 19
16 Delgado-Alvarado C, Sundaram P A. Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer's solution [J]. Acta Biomater., 2006, 2: 701
pmid: 16887397
17 Liu X, Ran D, Meng H M, et al. Effect of surface state on corrosion resistance of TC4 Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 828
17 刘星, 冉斗, 孟惠民 等. 表面状态对TC4钛合金的耐蚀性影响 [J]. 中国腐蚀与防护学报, 2021, 41: 828
18 Souza M E P, Lima L, Lima C R P, et al. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications [J]. J. Mater. Sci.: Mater. Med., 2009, 20: 549
doi: 10.1007/s10856-008-3623-y
19 Yu S Y, Scully J R, Vitus C M. Influence of niobium and zirconium alloying additions on the anodic dissolution behavior of activated titanium in HCl solutions [J]. J. Electrochem. Soc., 2001, 148: B68
doi: 10.1149/1.1337605
20 Shapovalov O V, Shapovalova O M, Ivchenko T I. Corrosion and mechanical properties of titanium alloyed with aluminum, iron, and molybdenum [J]. Mater. Sci., 2006, 42: 615
21 Zhang W J, Song X Y, Hui S X, et al. The effects of Mo content on microstructure and high temperature tensile behavior of Ti-6.5Al-2Sn-4Zr-xMo-2Nb-1W-0.2Si titanium alloys [J]. Mater. High Temp., 2017, 34: 179
doi: 10.1080/09603409.2016.1266763
22 Chen J R, Tsai W T. In situ corrosion monitoring of Ti-6Al-4V alloy in H2SO4/HCl mixed solution using electrochemical AFM [J]. Electrochim. Acta, 2011, 56: 1746
doi: 10.1016/j.electacta.2010.10.024
23 Cui Y W, Chen L Y, Liu X X. Pitting corrosion of biomedical titanium and titanium alloys: a brief review [J]. Curr. Nanosci., 2021, 17: 241
doi: 10.2174/1573413716999201125221211
[1] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[2] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[3] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[4] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[5] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[6] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[7] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[8] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[9] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[10] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[11] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[12] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[13] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[14] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[15] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.