|
|
两种热处理工艺对3Cr钢腐蚀行为影响及机理研究 |
夏晓健1, 万芯媛1, 陈云翔1, 韩纪层1, 陈奕扬1, 严康骅1, 林德源1, 陈天鹏2, 左晓梅3, 孙宝壮3, 程学群3( ) |
1.国网福建省电力有限公司电力科学研究院 福州 350003 2.国网福建省电力有限公司莆田供电公司 莆田 351100 3.北京科技大学腐蚀与防护中心 北京 100083 |
|
Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel |
XIA Xiaojian1, WAN Xinyuan1, CHEN Yunxiang1, HAN Jiceng1, CHEN Yiyang1, YAN Kanghua1, LIN Deyuan1, CHEN Tianpeng2, ZUO Xiaomei3, SUN Baozhuang3, CHENG Xuequn3( ) |
1.State Grid Fujian Electric Power Research Institute, Fuzhou 350003, China 2.State Grid Putian Electric Power Supply Company, Putian 351100, China 3.Corrosion Protection Center, University of Sciences and Technology Beijing, Beijing 100083, China |
引用本文:
夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
XIA Xiaojian,
WAN Xinyuan,
CHEN Yunxiang,
HAN Jiceng,
CHEN Yiyang,
YAN Kanghua,
LIN Deyuan,
CHEN Tianpeng,
ZUO Xiaomei,
SUN Baozhuang,
CHENG Xuequn.
Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 656-662.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.195
或
https://www.jcscp.org/CN/Y2023/V43/I3/656
|
1 |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
|
2 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
3 |
Sun B Z, Liu Z Y, He Y D, et al. A new study for healing pitting defects of 316L stainless steel based on microarc technology [J]. Corros. Sci., 2021, 187: 109505
doi: 10.1016/j.corsci.2021.109505
|
4 |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
|
5 |
Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
doi: 10.1016/j.corsci.2016.10.004
|
6 |
Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts [J]. Constr. Build. Mater., 2019, 213: 723
doi: 10.1016/j.conbuildmat.2019.03.334
|
7 |
Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance [J]. Constr. Build. Mater., 2019, 222: 750
doi: 10.1016/j.conbuildmat.2019.06.155
|
8 |
Sun B Z, Zuo X M, Cheng X Q, et al. The role of chromium content in the long-term atmospheric corrosion process [J]. npj Mater. Degrad., 2020, 4: 37
doi: 10.1038/s41529-020-00142-5
|
9 |
Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
|
10 |
Palraj S, Selvaraj M, Maruthan K, et al. Kinetics of atmospheric corrosion of mild steel in marine and rural environments [J]. J. Mar. Sci. Appl., 2015, 14: 105
doi: 10.1007/s11804-015-1286-x
|
11 |
Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
|
12 |
Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
|
13 |
Cheng X Q, Wang Y, Dong C F, et al. The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5% NaCl solution [J]. Corros. Sci., 2018, 134: 122
doi: 10.1016/j.corsci.2018.02.033
|
14 |
Pan Y, Song L F, Liu Z Y, et al. Effect of hydrogen charging on SCC of 2205 duplex stainless steel with varying microstructures in simulated deep-sea environment [J]. Corros. Sci., 2022, 196: 110026
doi: 10.1016/j.corsci.2021.110026
|
15 |
Liu Z Y, Li X G, Cheng Y F. In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution [J]. Electrochem. Commun., 2010, 12: 936
doi: 10.1016/j.elecom.2010.04.025
|
16 |
Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
doi: 10.1016/j.apsusc.2017.12.018
|
17 |
Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4wt%-Cu 0.5wt%-Cr 0.5wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
doi: 10.1016/j.corsci.2014.07.011
|
18 |
Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
doi: 10.1016/j.corsci.2021.109549
|
19 |
Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
doi: 10.1016/j.corsci.2020.108697
|
20 |
Li S P, Guo J, Yang S W, et al. Effect of carbon content and microstructure on the corrosion resistance of low alloy steels [J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 16
|
20 |
李少坡, 郭 佳, 杨善武 等. 碳含量和组织类型对低合金钢耐蚀性的影响 [J]. 北京科技大学学报, 2008, 30: 16
|
21 |
Guo J, Yang S W, Shang C J, et al. Incubation and development of atmospheric corrosion in the microstructures of low alloy steels [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 848
|
21 |
郭 佳, 杨善武, 尚成嘉 等. 大气腐蚀在低合金钢显微组织中的发生与发展 [J]. 北京科技大学学报, 2009, 31: 848
|
22 |
Wang Z F, Wu L X, Sun Y Q, et al. The Effect of the microstructure on the corrosion resistance of Bainitic steel [J]. Phys. Examinat. Test., 2011, 29(4): 37
|
22 |
王志奋, 吴立新, 孙宜强 等. 组织结构对贝氏体钢的耐腐蚀性能影响 [J]. 物理测试, 2011, 29(4): 37
|
23 |
Wang L W, Du C W, Liu Z Y, et al. Influences of Fe3C and pearlite on the electrochemical corrosion behaviors of low carbon ferrite steel [J]. Acta Metall. Sin., 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
|
23 |
王力伟, 杜翠薇, 刘智勇 等. Fe3C和珠光体对低碳铁素体钢腐蚀电化学行为的影响 [J]. 金属学报, 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
|
24 |
Moreto J A, Marino C E B, Bose Filho W W, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication [J]. Corros. Sci., 2014, 84: 30
doi: 10.1016/j.corsci.2014.03.001
|
25 |
Yang S H, Zhao Y J, Li L S, et al. Application of micro area electrochemical scanning technology [J]. Nonferrous Met. Sci. Eng., 2017, 8(3): 29
|
25 |
杨少华, 赵宇娟, 李林山 等. 微区电化学扫描技术应用现状 [J]. 有色金属科学与工程, 2017, 8(3): 29
|
26 |
Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
|
26 |
徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
|
27 |
Zhao Q Y, Fan E D, Zhao J B, et al. Improved stress corrosion cracking resistance of high-strength low-alloy steel in a simulated deep-sea environment via Nb microalloying [J]. Steel Res. Int., 2021, 92: 5
|
28 |
Sun B Z, Liao W J, Li Z, et al. Corrosion behavior of X65 pipeline steel in coastal areas [J]. Anti-Corros. Methods Mater., 2019, 66: 286
doi: 10.1108/ACMM-06-2018-1953
|
29 |
Cheng P, Liu J, Huang F, et al. Corrosion behavior of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 563
|
29 |
程 鹏, 刘 静, 黄 峰 等. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 563
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|