Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 243-248    DOI: 10.11902/1005.4537.2021.108
  研究报告 本期目录 | 过刊浏览 |
真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响
李玲1, 杜汐然1, 曲品权1, 李建呈1, 王金龙1(), 古岩2, 张甲3, 陈明辉1, 王福会1
1.沈阳材料科学国家研究中心 东北大学联合研究分部 沈阳 110819
2.中国航发沈阳黎明航空发动机有限责任公司 沈阳 110043
3.中国科学院金属研究所 沈阳 110819
Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings
LI Ling1, DU Xiran1, QU Pinquan1, LI Jiancheng1, WANG Jinlong1(), GU Yan2, ZHANG Jia3, CHEN Minghui1, WANG Fuhui1
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Aero Engine Corporation of China Shenyang Liming aero-engine Co. Ltd. , Shenyang 110043, China
3.Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110819, China
全文: PDF(7150 KB)   HTML
摘要: 

采用多弧离子镀技术在镍基高温合金上沉积NiCoCrAlY涂层,通过真空热处理消除涂层内部孔洞。研究了950、1000和1050 ℃热处理后的涂层在1000 ℃下的氧化实验,以探究最优的热处理温度。采用XRD、SEM和EDS观察分析涂层的物相组成和表截面形貌。结果表明,真空热处理后,基体与涂层结合紧密,氧化增重相对缓慢,涂层表面能形成均匀致密的氧化膜。其中,1000 ℃下真空热处理的涂层表现出了良好的抗氧化和防剥落性能。

关键词 MCrAlY涂层高温氧化真空热处理多弧离子镀高温防护涂层    
Abstract

MCrAlY coatings are widely used for various parts of high-temperature alloy to enhance their corrosion resistance at high temperatures. However, there still exist unavoidable defects within the as-prepared coating, as well as at the interface coating/substrate, which promotes the initiation of cracking and failure of the coating during service at high temperature, and ultimately limits the service life of the alloy components. In this study, NiCoCrAlY coating was deposited on K417G high temperature alloy by arc ion plating, and the coated alloy samples was vacuum heat treated at 950, 1000 and 1050 ℃ respectively for 4 h. Further, the oxidation behavior of the heat-treated samples were assessed isothermally at 1000 ℃ in air for a long term so that to examine the effectiveness of vacuum heat treatment. Finally, the surface and cross-sectional morphology and phase composition of the oxidized coating/alloy were characterized by means of XRD, SEM with EDS. The results show that after vacuum heat treatment the plated NiCoCrAlY coating is tightly bonded to the substrate alloy, the oxidation mass gain of the coatings is relatively slow, and a uniform and dense oxide scale can form on their surface. Among others, the sample after heat-treated at 1000°C provides the best performance, which exhibits better resistance to scale spallation with lower mass gain.

Key wordsMCrAlY coating    high temperature oxidation    vacuum heat treatment    arc ion plating    high temperature protective coating
收稿日期: 2021-05-14     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51801021);教育部中央高校基本科研业务费(N2102015);工信部项目(MJ-2017-J-99)
通讯作者: 王金龙     E-mail: Wangjinlong@mail.neu.edu.cn
Corresponding author: WANG Jinlong     E-mail: Wangjinlong@mail.neu.edu.cn
作者简介: 李玲,女,2001年生

引用本文:

李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
Ling LI, Xiran DU, Pinquan QU, Jiancheng LI, Jinlong WANG, Yan GU, Jia ZHANG, Minghui CHEN, Fuhui WANG. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 243-248.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.108      或      https://www.jcscp.org/CN/Y2022/V42/I2/243

图1  热处理后3组试样的表面及截面形貌
图2  沉积态和真空热处理后涂层的XRD谱
图3  试样在1000 ℃下空气中氧化100 h的氧化动力学曲线及抛物线速率常数
图4  试样在1000 ℃下氧化100 h的XRD谱
图5  试样在1000 ℃下氧化100 h的表面形貌及截面形貌
1 Smith R J, Lewi G J, Yates D H. Development and application of nickel alloys in aerospace engineering [J]. Aircr. Eng. Aerosp. Technol., 2001, 73: 138
2 Cruchley S, Evans H E, Taylor M P, et al. Chromia layer growth on a Ni-based superalloy: Sub-parabolic kinetics and the role of titanium [J]. Corros. Sci., 2013, 75: 58
3 El-Awadi G A, Abdel-Samad S, Elshazly E S. Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys [J]. Appl. Surf. Sci., 2016, 378: 224
4 Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying [J]. Surf. Coat. Technol., 2010, 205: 2225
5 Zhu L J, Zhu S L, Wang F H, et al. Comparison of the cyclic oxidation behavior of a low expansion Ni+CrAlYSiN nanocomposite and a NiCrAlYSi coating [J]. Corros. Sci., 2014, 80: 393
6 Cheruvu N S, Wei R, Govindaraju M R, et al. Cyclic oxidation behavior and microstructure of nanocrystalline Ni-20Cr-4Al coating [J]. Oxid. Met., 2010, 73: 493
7 Wang F H. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales [J]. Oxid. Met., 1997, 48: 215
8 Peng H, Guo H B, He J, et al. Oxidation and diffusion barrier behaviors of double-layer NiCoCrAlY coatings produced by plasma activated EB-PVD [J]. Surf. Coat. Technol., 2011, 205: 4658
9 Wu Y N, Zhang G, Feng Z C, et al. Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY-Al2O3 coatings [J]. Surf. Coat. Technol., 2001, 138: 56
10 Xie S M, Lin S S, Shi Q, et al. A study on the mechanical and thermal shock properties of MCrAlY coating prepared by arc ion plating [J]. Surf. Coat. Technol., 2021, 413: 127092
11 Ghadami F, Aghdam A S R, Ghadami S. Microstructural characteristics and oxidation behavior of the modified MCrAlX coatings: A critical review [J]. Vacuum, 2021, 185: 109980
12 Yuan K, Peng R L, Li X H, et al. Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation [J]. Surf. Coat. Technol., 2015, 261: 86
13 Tian Y, Guo S L, Yang X J. Effects of heat treatment on microstructure and properties of NiCoCrAlY coating with HVOF spraying [J]. Therm. Spray Technol., 2018, 10(3): 19
13 田晔, 郭素丽, 杨晓剑. 热处理对超音速火焰喷涂NiCoCrAlY涂层组织性能的影响 [J]. 热喷涂技术, 2018, 10(3): 19
14 Ullah A, Khan A, Bao Z B, et al. Effect of vacuum annealing on initial oxidation behavior and alumina transition of NiCoCrAlY coatings [J]. Surf. Coat. Technol., 2020, 404: 126441
15 Guo C, Zhou F, Chen M H, et al. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70: 1
16 Yang H Z, Zou J P, Shi Q, et al. Recent advances for interface diffusion behavior in MCrAlY coatings at elevated temperature oxidation [J]. Rare Met. Mater. Eng., 2020, 49: 2240
16 杨洪志, 邹俭鹏, 石倩等. MCrAlY涂层高温氧化界面扩散行为研究进展 [J]. 稀有金属材料与工程, 2020, 49: 2240
17 Yang S W, Wang J Y, Sun J, et al. High temperature oxidation of the DZ4 directionally-solidified superalloy [J]. J. Harbin Eng.Univ., 2008, 29: 95
17 杨世伟, 王俊一, 孙杰等. DZ4定向凝固合金的抗高温氧化行为研究 [J]. 哈尔滨工程大学学报, 2008, 29: 95
18 Du H Q, Tian S G, Yu X F, et al. Influences of NiCoCrAlYSi coating on high temperature oxidation characteristic of single crystal nickel-base superalloy [J]. Rare Met. Mater. Eng., 2008, 37: 1555
18 杜洪强, 田素贵, 于兴福等. NiCoCrAlYSi涂层对镍基单晶合金高温氧化特性的影响 [J]. 稀有金属材料与工程, 2008, 37: 1555
19 Zheng L, Zhang M C, Chellali R, et al. Investigations on the growing, cracking and spalling of oxides scales of powder metallurgy Rene95 nickel-based superalloy [J]. Appl. Surf. Sci., 2011, 257: 9762
20 Shen M L, Zhao P P, Gu Y, et al. High vacuum arc ion plating NiCrAlY coatings: microstructure and oxidation behavior [J]. Corros. Sci., 2015, 94: 294
21 Li W Z, Li Y Q, Yi D Q, et al. Microstructural evolution and failure mechanism of NiCrAlY coating systems during different cycled oxidations [J]. Chin. J. Nonferrous Met., 2013, 23: 417
21 李伟洲, 李月巧, 易丹青等. 不同冷热循环条件下NiCrAlY涂层体系的微观组织演变规律及失效机理 [J]. 中国有色金属学报, 2013, 23: 417
22 Wang H T. Effects and mechanism of composite oxide scale on oxidation resistance of ferro based supperalloys [D]. Ji'nan: Shandong University, 2010
22 王海涛. 复合氧化膜对铁基高温合金抗氧化性能影响与机理研究 [D]. 济南: 山东大学, 2010
23 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
24 Haynes J A, Pint B A, Porter W D, et al. Comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys [J]. Mater. High Temp., 2004, 21: 87
25 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. 2nd ed. Cambridge: Cambridge University Press, 2006
26 Jia Y X, Zhu S L, Liu Z L, et al. Effects of oxygen incorporation in low expansion Ni+CrAlYN nanocomposite coatings on the oxidation behavior [J]. Corros. Sci., 2020, 167: 108550
27 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001
27 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
[1] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[2] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[3] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[4] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[5] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[6] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[7] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[8] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[9] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[10] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[11] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[12] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[13] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[14] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[15] 张明明,辛丽,丁学勇,耿树江,朱圣龙,王福会. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.