Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 602-608    DOI: 10.11902/1005.4537.2020.220
  研究报告 本期目录 | 过刊浏览 |
热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响
冯彦朋1, 张弦2, 吴开明2, 杨淼1()
1.武汉理工大学化学化工与生命科学学院 武汉 430070
2.武汉科技大学 高性能钢铁材料及其应用湖北省协同创新中心 武汉 430081
Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel
FENG Yanpeng1, ZHANG Xian2, WU Kaiming2, YANG Miao1()
1.School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
2.Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(11156 KB)   HTML
摘要: 

采用一步贝氏体等温转变、两步贝氏体等温转变和淬火工艺对中碳钢进行热处理,对不同实验钢的显微组织、物相分布、原位腐蚀和电化学性能进行了表征和测试。结果表明,与一步贝氏体等温工艺和淬火工艺相比,两步贝氏体等温转变工艺后形成的超细贝氏体钢中残余奥氏体含量更小,组织更加均匀。在贝氏体铁素体-残余奥氏体形成的微电偶作用下,超细贝氏体钢中贝氏体铁素体相选择性溶解,产生点蚀坑并沿着板条方向扩展,而均匀分布的薄膜状残余奥氏体阻碍了腐蚀的进一步发展。电化学测试结果显示,在0.5% (质量分数) NaCl溶液中两步贝氏体钢的耐腐蚀性能较一步贝氏体钢和马氏体钢更为优异。

关键词 超细贝氏体钢热处理工艺显微组织耐腐蚀性能    
Abstract

A medium carbon steel was heat treated by one-step bainite isothermal, two-step bainite isothermal- and quenching-treatment respectively, and the microstructure, phase distribution, corrosion performance and electrochemical properties of the different heat treated steels were characterized. The results show that compared with the one-step bainite isothermal- and quenching-treated steels, the ultrafine bainite steel after the two-step bainite isothermal treatment has a more uniform structure with smaller proportion of retained austenite. The bainite ferrite phase in the ultrafine bainite steel is selectively dissolved due to the micro-galvanic effect between bainite ferrite and massive retained austenite, resulting in the initiation and propagation of pitting corrosion along the lath direction. However, uniformly distributed film-like retained austenite hinders the further development of corrosion. The electrochemical test results show that the two-step bainite isothermal treated steel has the best corrosion resistance, and the martensitic steel has the worst corrosion resistance.

Key wordsultra-fine bainite steel    heat treatment process    microstructure    corrosion resistance
收稿日期: 2020-11-02     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51601138);耐火材料与冶金省部共建国家重点实验室基金(2018QN18)
通讯作者: 杨淼     E-mail: yangmiao@whut.edu.cn
Corresponding author: YANG Miao     E-mail: yangmiao@whut.edu.cn
作者简介: 冯彦朋,男,1996年生,硕士生

引用本文:

冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
Yanpeng FENG, Xian ZHANG, Kaiming WU, Miao YANG. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 602-608.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.220      或      https://www.jcscp.org/CN/Y2021/V41/I5/602

图1  一步贝氏体钢、两步贝氏体钢和马氏体钢组织的OM和SEM像
图2  3种实验钢的XRD谱
图3  腐蚀10和60 min后一步贝氏体钢、两步贝氏体钢和马氏体钢的原位形貌
图4  3种实验钢的动电位极化曲线图
MaterialI0 / A·cm-2E0 / VV / mm·a-1
One-step bainite steel1.67×10-5-0.590.20
Two-step bainite steel7.79×10-6-0.400.09
Martensitic steel4.46×10-5-0.550.52
表1  3种实验钢的动电位极化Tafel拟合值
图5  3种实验钢的电化学阻抗谱
MaterialRsΩ·cm2CPE,YoFreq power, nRctΩ·cm2
One-step bainite steel31.310.00100.691458
Two-step bainite steel30.310.00110.732176
Martensitic steel32.930.00150.71834
表2  3种实验钢的电化学阻抗电路拟合值
图6  一步贝氏体钢、两步贝氏体钢和马氏体钢的初期腐蚀机理图
1 Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel [J]. Engineering, 2019, 5: 319
2 Malitckii E, Yagodzinskyy Y, Vilaҫa P. Role of retained austenite in hydrogen trapping and hydrogen-assisted fatigue fracture of high-strength steels [J]. Mater. Sci. Eng., 2019, 760A: 68
3 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Mater. Sci. Technol., 2002, 18: 279
4 Caballero F G, Miller M K, Babu S S, et al. Atomic scale observations of bainite transformation in a high carbon high silicon steel [J]. Acta Mater., 2007, 55: 381
5 Wu H B, Ju B, Che Y J. Effect of austempering temperature on the microstructure evolution of ultrafine bainite steel [J]. Chin. J. Eng., 2016, 38: 1741
5 武会宾, 巨彪, 车英建. 等温温度对超细贝氏体钢组织演变规律的影响 [J]. 工程科学学报, 2016, 38: 1741
6 Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels [J]. ISIJ Int., 2005, 45: 1736
7 Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite [J]. ISIJ Int., 2003, 43: 1238
8 Bhadeshia H K D H. High performance bainitic steels [J]. Mater. Sci. Forum, 2005, 500/501: 63
9 Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates [J]. Mater. Sci. Eng., 2006, 438-440A: 145
10 Wan X L, Hu F, Cheng L, et al. Effect of retained austenite on plasticity and toughness of micro/nano bainitic steel [J]. J. Iron Steel Res., 2019, 31: 305
10 万响亮, 胡锋, 成林等. 残留奥氏体对微纳贝氏体钢塑韧性的影响 [J]. 钢铁研究学报, 2019, 31: 305
11 Kim S J, Park J H, Kim K Y. Effect of microstructure on sulfide scale formation and corrosion behavior of pressure vessel steel in sour environment [J]. Mater. Charact., 2016, 111: 14
12 Wang Z F, Li P H, Guan Y, et al. The corrosion resistance of ultra-low carbon bainitic steel [J]. Corros. Sci., 2009, 51: 954
13 Qu S P, Pang X L, Wang Y B, et al. Corrosion behavior of each phase in low carbon microalloyed ferrite-bainite dual-phase steel experiments and modeling [J]. Corros. Sci., 2013, 75: 67
14 Wei J, Dong J H, Zhou Y T, et al. Influence of the secondary phase on micro galvanic corrosion of low carbon bainitic steel in NaCl solution [J]. Mater. Charact., 2018, 139: 401
15 Kazum O, Bobby Kannan M, Beladi H, et al. Aqueous corrosion performance of nanostructured bainitic steel [J]. Mater. Des., 2014, 54: 67
16 Rovere C A D, Santos F S, Silva R, et al. Influence of long-term low-temperature aging on the microhardness and corrosion properties of duplex stainless steel [J]. Corros. Sci., 2013, 68: 84
17 Hui W J, Tian P, Dong H, et al. Influence of deformation temperature on the microstructure transformation in medium carbon steel [J]. Acta Metall. Sin., 2005, 41: 611
17 惠卫军, 田鹏, 董瀚等. 形变温度对中碳钢组织转变的影响 [J]. 金属学报, 2005, 41: 611
18 Qi Z F. Transformation of supercooling austenite in carbon steel [J]. Trans. Mater. Heat Treat., 2017, 38(4): 1
18 戚正风. 碳钢过冷奥氏体的转变 [J]. 材料热处理学报, 2017, 38(4): 1
19 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
20 Caballero F G, Miller M K, Garcia-Mateo C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel [J]. Acta Mater., 2010, 58: 2338
[1] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[2] 王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[3] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[4] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[5] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[7] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[8] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[9] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[10] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[11] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[12] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[13] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[14] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[15] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.