Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1413-1418     CSTR: 32134.14.1005.4537.2022.411      DOI: 10.11902/1005.4537.2022.411
  研究报告 本期目录 | 过刊浏览 |
热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响
商婷(), 蒋光锐, 刘广会, 秦汉成
首钢技术研究院 绿色可循环钢铁流程北京市重点实验室 北京 100043
Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating
SHANG Ting(), JIANG Guangrui, LIU Guanghui, QIN Hancheng
Beijing Key Laboratory of Green Recyclable Process for Iron & steel Production Technology, Shougang Research Institute of Technology, Beijing 100043, China
引用本文:

商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
Ting SHANG, Guangrui JIANG, Guanghui LIU, Hancheng QIN. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1413-1418.

全文: PDF(6793 KB)   HTML
摘要: 

采用两种工艺 (500 ℃-10 min,700 ℃-10 min) 对Zn-6%Al-3%Mg镀层钢板进行加热处理,通过扫描电镜 (SEM) 、X射线衍射 (XRD) 和中性盐雾实验对原始样品和两种热处理样品的耐蚀性、腐蚀形貌和物相进行观察分析,对比研究了锌铝镁镀层在高温加热条件下镀层组织结构及耐蚀性的变化规律。结果表明,Zn-6%Al-3%Mg镀层钢板经过500 ℃-10 min热处理后,镀层形貌、物相及腐蚀产物种类与原始样品类似,腐蚀失重和增重也与原始样品基本相同,可以认为该热处理工艺对其微观组织和耐蚀性的影响不大。经过700 ℃-10 min热处理后,镀层组织从单层多相结构转变为分层多相结构,腐蚀产物中有较多Fe的氧化物,主要由析出到镀层表面的富铁相形成,富锌镀层仍然完整覆盖在钢基体表面,腐蚀增重达到原始样品的3.2倍,腐蚀失重达到原始样品的2.2倍。

关键词 锌铝镁镀层热处理耐蚀性    
Abstract

The Zn-6%Al-3%Mg coated steel plates were subjected to post-heat treatments at 500 ℃-10 min and 700 ℃-10 min, respectively. Then the microstructure, phase composition and corrosion resistance of the Zn-6%Al-3%Mg coated steel plates before and after heat treatment were comparatively characterized by SEM, XRD and neutral salt spray test. The results show that the morphology, phase composition and corrosion products of Zn-6%Al-3%Mg coated steel plate after heat treatment at 500 ℃-10 min are similar to those without heat treated ones, their corrosion mass changes are basically the same. However after heat treatment at 700 ℃-10 min, the coating structure changes from single-layer of multiphase structure to multi-layer of multiphase structure, it is worth noting that there are more Fe oxides in the corrosion products, which are mainly formed by the iron-rich phase precipitated on the surface of the coating. After corrosion test, the zinc-rich surface coating on the steel substrate kept completely intact, while the corresponding corrosion mass gain is 3.2 times of the un-heat treated ones, on the other hand, the corrosion mass loss is 2.2 times of the un-heat treated ones.

Key wordsZn-Al-Mg coating    heat treatment    corrosion resistance
收稿日期: 2022-12-26      32134.14.1005.4537.2022.411
ZTFLH:  TG174  
通讯作者: 商婷,E-mail: happy3happy@163.com,研究方向为镀层耐蚀性
Corresponding author: SHANG Ting, E-mail: happy3happy@163.com
作者简介: 商婷,女,1983年生,硕士,高级工程师
图1  不同锌铝镁镀层微观组织形貌
PointOMgAlFeZn
A--18.43-81.57
B--0.721.5097.78
C-5.144.69-90.17
D--18.540.7280.74
E--0.822.9596.23
F-3.983.990.7891.25
G38.33---61.67
H--18.8178.962.23
I--1.0722.7576.18
J---74.8125.19
表1  图1中锌铝镁镀层截面不同位置的化学成分
图2  3种样品热处理后XRD谱
图3  不同加热温度样品中性盐雾实验1350 h后宏观形貌
图4  不同加热温度锌铝镁镀层中性盐雾实验1350 h后镀层微观组织
PointOMgAlFeZn
A10.63-22.658.8857.84
B15.21-0.921.6081.27
C17.593.362.484.9871.59
D25.21-16.3910.7347.66
E18.53-2.530.9877.96
F30.370.9725.971.241.5
G32.70-1.7921.1544.37
H1.94-17.0574.466.55
I2.43-2.2929.7765.51
J---78.9521.05
表2  图4中锌铝镁镀层截面不同位置的化学成分
图5  3种样品中性盐雾1350 h后XRD谱
图6  不同加热温度样品中性盐雾1350 h后单位面积失重和增重
1 Komatsu A, Izutani H, Tsujimura T, et al. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment [J]. Tetsu-to-Hagane, 2000, 86: 534
doi: 10.2355/tetsutohagane1955.86.8_534
2 Nishimura K, Shindo H, Okada T, et al. Development and properties of Zn-Mg galvanized steel sheet "DYMAZINC" [J]. Materia Japan, 2001, 40: 292
doi: 10.2320/materia.40.292
3 Morimoto Y, Honda K, Nishimura K, et al. Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet “SUPER DYMA” [J]. Nippon Steel Technical Report, 2003, 87: 24
4 Sohn I R, Kim T C, Ju G I, et al. Anti-corrosion performance and applications of PosMAC® steel [J]. Corros. Sci. Technol., 2021, 20: 7
5 Schouller-Guinet P, Allely C, Volovitch P. ZnAlMg: An innovative metallic coating that offers protection in the harshest environments [A]. Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Milano: Associazione Italiana Di Metallurgia, 2011: 95
6 Jiang G R, Zheng X B, Zhao X F, et al. Application of the hot-dip galvanized Zn-Al-Mg alloyed coating steel sheet on automobile body [J]. Automob. Technol. Mater., 2021, (4) : 12
6 蒋光锐, 郑学斌, 赵晓非 等. 汽车车身用热浸镀锌铝镁镀层钢板 [J]. 汽车工艺与材料, 2021, (4) : 12
7 Jiang G R, Liu G H. Microstructure and corrosion resistance of solidified Zn-Al-Mg alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 191
7 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 191
doi: 10.11902/1005.4537.2017.022
8 Xie Y X, Jin X Y, Wang L. Development and application of hot-dip galvanized zinc-aluminum-magnesium coating [J]. J. Iron Steel Res., 2017, 29: 167
8 谢英秀, 金鑫焱, 王 利. 热浸镀锌铝镁镀层开发及应用进展 [J]. 钢铁研究学报, 2017, 29: 167
9 Prosek T, Larché N, Vlot M, et al. Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications [J]. Mater. Corros., 2010, 61: 412
10 Shimoda N, Ueda K, Kubo Y. Corrosion resistance of several Zn-Al-Mg alloy coated steels [J]. Nippon Steel & Sumitomo Metal Technical Report, 2015, 108: 60
11 Thierry D, Persson D, Luckeneder G, et al. Atmospheric corrosion of ZnAlMg coated steel during long term atmospheric weathering at different worldwide exposure sites [J]. Corros. Sci., 2019, 148: 338
doi: 10.1016/j.corsci.2018.12.033
12 Chang J K, Lin C S, Wang W R. Oxidation and corrosion behavior of commercial 5% Al-Zn coated steel during austenitization heat treatment [J]. Surf. Coat. Technol., 2018, 350: 880
doi: 10.1016/j.surfcoat.2018.03.098
13 Xie Y Y, Hu W X, Cheng Y, et al. Effect of heat treatment process on microstructure and corrosion resistance of Al-10%Si-24%Zn coating [J]. Surf. Coat. Technol., 2020, 401: 126305
doi: 10.1016/j.surfcoat.2020.126305
14 Nogueira T M C, Cruz M A S, Rios P R. Influence of an annealing heat treatment on the microstructure, ductility, and corrosion resistance of a chromated 55 Wt. % Al-Zn coated steel sheet [J]. J. Mater. Eng. Perform., 2001, 10: 314
doi: 10.1361/105994901770345024
15 Wang Y F, Ma D G, Li J Y, et al. Effect of heating system on structure and corrosion resistance of zinc-aluminium-magnesium coating [J]. Hebei Metall., 2021, (8): 28
15 王言峰, 马德刚, 李建英 等. 加热制度对锌铝镁镀层结构及耐蚀性的影响 [J]. 河北冶金, 2021, (8): 28
16 You K, Ni X H, Li J H, et al. Crack defects analysis and countermeasures of Zn-Al-Mg coated steel caused by high temperature burning treatment [J]. Coat. Prot., 2022, 43(7): 29
16 尤 坤, 倪雪辉, 李金华 等. 高温灼烧导致的锌铝镁镀层裂纹缺陷分析及其防护措施 [J]. 涂层与防护, 2022, 43(7): 29
17 Chang J K, Lin C S. Microstructural evolution of 11Al-3Mg-Zn ternary alloy-coated steels during austenitization heat treatment [J]. Metall. Mater. Trans., 2017, 48A: 3734
18 Ghatei-Kalashami A, Khan M S, Lee M Y, et al. High-temperature phase evolution of the ZnAlMg coating and its effect on mitigating liquid-metal-embrittlement cracking [J]. Acta Mater., 2022, 229: 117836
doi: 10.1016/j.actamat.2022.117836
19 TsujimuraTakao. Development of Hot-dip Zn-6%Al-3%Mg Alloy Coated Steel Sheet, "ZAM" [R]. Nisshin Steel Technical Report, 2011, (92): 1
[1] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[2] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[3] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[4] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[5] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[6] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[7] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[8] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[9] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[12] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[13] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[14] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[15] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.