Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 656-662     CSTR: 32134.14.1005.4537.2022.195      DOI: 10.11902/1005.4537.2022.195
  研究报告 本期目录 | 过刊浏览 |
两种热处理工艺对3Cr钢腐蚀行为影响及机理研究
夏晓健1, 万芯媛1, 陈云翔1, 韩纪层1, 陈奕扬1, 严康骅1, 林德源1, 陈天鹏2, 左晓梅3, 孙宝壮3, 程学群3()
1.国网福建省电力有限公司电力科学研究院 福州 350003
2.国网福建省电力有限公司莆田供电公司 莆田 351100
3.北京科技大学腐蚀与防护中心 北京 100083
Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel
XIA Xiaojian1, WAN Xinyuan1, CHEN Yunxiang1, HAN Jiceng1, CHEN Yiyang1, YAN Kanghua1, LIN Deyuan1, CHEN Tianpeng2, ZUO Xiaomei3, SUN Baozhuang3, CHENG Xuequn3()
1.State Grid Fujian Electric Power Research Institute, Fuzhou 350003, China
2.State Grid Putian Electric Power Supply Company, Putian 351100, China
3.Corrosion Protection Center, University of Sciences and Technology Beijing, Beijing 100083, China
全文: PDF(13167 KB)   HTML
摘要: 

采用电化学测试、扫描Kelvin探针 (SKP)、原子力显微镜 (AFM) 和浸泡实验等手段研究了两种热处理条件下含3%Cr (质量分数) 的低碳钢在含Cl-环境中的腐蚀行为与机理,利用微区电化学等手段建立了显微组织与耐蚀性的相关性。结果表明:含3%Cr钢退火后得到单一铁素体组织,正火后得到铁素体+贝氏体组织。两种组织的差异是造成初期腐蚀形貌差异的根本原因,正火组织由于不同相间的电偶效应导致其耐蚀性较退火组织差。

关键词 低碳钢热处理组织结构微区电化学    
Abstract

The effect of heat treatments on the corrosion behavior of low carbon steels with 3%Cr (mass fraction) in Cl- containing environment was assessed by means of immersion test, electrochemical measurements, scanning Kelvin probe (SKP), and atomic force microscope (AFM). Results show that annealing leads to single ferrite microstructure, and normalizing causes duplex microstructure consisting of ferrite and bainite. The microstructure difference is the intrinsic reason for the corrosion morphology difference in the initial corrosion stage. In the contrast to the microstructure of annealed steel, the existence of two phases in the normalized microstructure causes galvanic effect, which then resulted in lower corrosion resistance of the steel.

Key wordslow carbon steel    heat treatment    microstructure    micro-electrochemistry
收稿日期: 2022-06-14      32134.14.1005.4537.2022.195
ZTFLH:  TG172.3  
基金资助:国网福建省电力有限公司科技项目(52130421N003)
通讯作者: 程学群,E-mail:chengxuequn@ustb.edu.cn,研究方向为钢铁耐蚀机理及新型耐蚀钢研发
Corresponding author: CHENG Xuequn, E-mail: chengxuequn@ustb.edu.cn
作者简介: 夏晓健,男,1988年生,博士

引用本文:

夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 656-662.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.195      或      https://www.jcscp.org/CN/Y2023/V43/I3/656

图1  3Cr试验钢的热处理工艺示意图
图2  SKP扫描样品位置示意图
图3  不同热处理条件下3Cr钢的金相组织
图4  不同热处理条件下3Cr钢组织EBSD表征
图5  不同热处理条件下3Cr钢试样浸泡2和20 d后的表面腐蚀微观形貌
图6  不同热处理条件下3Cr钢浸泡20 d后去除腐蚀产物的微观形貌和3D形貌
图7  退火试样及正火试样在0.5%NaCl (pH 3) 溶液中浸泡不同时间后的电化学阻抗谱
图8  电化学阻抗谱等效电路图
图9  两种热处理试样浸泡不同时间后的Rct变化曲线
图10  正火/退火偶接试样在浸泡30 min前后样品表面SKP电位分布
图11  不同热处理条件3Cr钢试样表面形貌图、电势分布图和电势曲线分布图
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
2 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
3 Sun B Z, Liu Z Y, He Y D, et al. A new study for healing pitting defects of 316L stainless steel based on microarc technology [J]. Corros. Sci., 2021, 187: 109505
doi: 10.1016/j.corsci.2021.109505
4 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
5 Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
doi: 10.1016/j.corsci.2016.10.004
6 Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts [J]. Constr. Build. Mater., 2019, 213: 723
doi: 10.1016/j.conbuildmat.2019.03.334
7 Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance [J]. Constr. Build. Mater., 2019, 222: 750
doi: 10.1016/j.conbuildmat.2019.06.155
8 Sun B Z, Zuo X M, Cheng X Q, et al. The role of chromium content in the long-term atmospheric corrosion process [J]. npj Mater. Degrad., 2020, 4: 37
doi: 10.1038/s41529-020-00142-5
9 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
10 Palraj S, Selvaraj M, Maruthan K, et al. Kinetics of atmospheric corrosion of mild steel in marine and rural environments [J]. J. Mar. Sci. Appl., 2015, 14: 105
doi: 10.1007/s11804-015-1286-x
11 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
12 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
13 Cheng X Q, Wang Y, Dong C F, et al. The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5% NaCl solution [J]. Corros. Sci., 2018, 134: 122
doi: 10.1016/j.corsci.2018.02.033
14 Pan Y, Song L F, Liu Z Y, et al. Effect of hydrogen charging on SCC of 2205 duplex stainless steel with varying microstructures in simulated deep-sea environment [J]. Corros. Sci., 2022, 196: 110026
doi: 10.1016/j.corsci.2021.110026
15 Liu Z Y, Li X G, Cheng Y F. In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution [J]. Electrochem. Commun., 2010, 12: 936
doi: 10.1016/j.elecom.2010.04.025
16 Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
doi: 10.1016/j.apsusc.2017.12.018
17 Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4wt%-Cu 0.5wt%-Cr 0.5wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
doi: 10.1016/j.corsci.2014.07.011
18 Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
doi: 10.1016/j.corsci.2021.109549
19 Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
doi: 10.1016/j.corsci.2020.108697
20 Li S P, Guo J, Yang S W, et al. Effect of carbon content and microstructure on the corrosion resistance of low alloy steels [J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 16
20 李少坡, 郭 佳, 杨善武 等. 碳含量和组织类型对低合金钢耐蚀性的影响 [J]. 北京科技大学学报, 2008, 30: 16
21 Guo J, Yang S W, Shang C J, et al. Incubation and development of atmospheric corrosion in the microstructures of low alloy steels [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 848
21 郭 佳, 杨善武, 尚成嘉 等. 大气腐蚀在低合金钢显微组织中的发生与发展 [J]. 北京科技大学学报, 2009, 31: 848
22 Wang Z F, Wu L X, Sun Y Q, et al. The Effect of the microstructure on the corrosion resistance of Bainitic steel [J]. Phys. Examinat. Test., 2011, 29(4): 37
22 王志奋, 吴立新, 孙宜强 等. 组织结构对贝氏体钢的耐腐蚀性能影响 [J]. 物理测试, 2011, 29(4): 37
23 Wang L W, Du C W, Liu Z Y, et al. Influences of Fe3C and pearlite on the electrochemical corrosion behaviors of low carbon ferrite steel [J]. Acta Metall. Sin., 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
23 王力伟, 杜翠薇, 刘智勇 等. Fe3C和珠光体对低碳铁素体钢腐蚀电化学行为的影响 [J]. 金属学报, 2011, 47: 1227
doi: 10.3724/SP.J.1037.2011.00198
24 Moreto J A, Marino C E B, Bose Filho W W, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication [J]. Corros. Sci., 2014, 84: 30
doi: 10.1016/j.corsci.2014.03.001
25 Yang S H, Zhao Y J, Li L S, et al. Application of micro area electrochemical scanning technology [J]. Nonferrous Met. Sci. Eng., 2017, 8(3): 29
25 杨少华, 赵宇娟, 李林山 等. 微区电化学扫描技术应用现状 [J]. 有色金属科学与工程, 2017, 8(3): 29
26 Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
26 徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
27 Zhao Q Y, Fan E D, Zhao J B, et al. Improved stress corrosion cracking resistance of high-strength low-alloy steel in a simulated deep-sea environment via Nb microalloying [J]. Steel Res. Int., 2021, 92: 5
28 Sun B Z, Liao W J, Li Z, et al. Corrosion behavior of X65 pipeline steel in coastal areas [J]. Anti-Corros. Methods Mater., 2019, 66: 286
doi: 10.1108/ACMM-06-2018-1953
29 Cheng P, Liu J, Huang F, et al. Corrosion behavior of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 563
29 程 鹏, 刘 静, 黄 峰 等. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 563
[1] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[2] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[3] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[4] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[5] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[6] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[7] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[8] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[11] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[12] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[13] 蔡思祺, 赵萱, 罗强, 李欣蔚, 蔡启舟. 纯Ti表面微弧氧化-碱热处理仿生陶瓷膜的制备及耐蚀性[J]. 中国腐蚀与防护学报, 2014, 34(3): 277-282.
[14] 陈斌锴 陈庆舍 仲海峰 郝晓东 江社明 张启富. 440 MPa高强IF钢镀锌层中抑制层的组织结构及生长机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 188-192.
[15] 陈斌锴 仲海峰 张启富. 锌液中Al含量对440 MPa级高强IF钢镀层的组织结构及抑制层的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 171-174.