Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 488-495    DOI: 10.11902/1005.4537.2014.223
  研究报告 本期目录 | 过刊浏览 |
锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响
郭跃岭1,2,韩恩厚1,2(),王俭秋1
1. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2. 北京科技大学 国家材料服役安全科学中心 北京 100083
Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution
Yueling GUO1,2,En-Hou HAN1,2(),Jianqiu WANG1
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1392 KB)   HTML
摘要: 

研究了锻后固溶处理和锻后去应力处理对核电主管道用316LN不锈钢的显微组织、残余应变和常温力学性能的影响,并研究了不同锻后热处理工艺对316LN不锈钢在沸腾的42% (质量分数) MgCl2溶液中应力腐蚀开裂 (SCC) 敏感性的影响。结果表明,固溶处理能够降低材料的屈服强度和消除锻造过程中的残余应变;锻后固溶处理和锻后去应力处理的样品分别在沸腾MgCl2溶液中浸泡24,48和72 h后均发生明显的穿晶应力腐蚀开裂 (TGSCC);浸泡72 h后,锻后去应力处理的样品已经完全开裂,而锻后固溶处理的样品只有部分区域发生SCC开裂,即SCC敏感性较低。最后从屈服强度和残余应变角度讨论了锻后热处理对不锈钢SCC敏感性的影响机制。

关键词 不锈钢核电材料热处理应力腐蚀开裂MgCl2溶液断口    
Abstract

Effect of post solution- and stress relief-treatment on the stress corrosion cracking (SCC) resistance via U-bend specimens test in 42% boiling MgCl2 solution, as well as the microstructure, residual strain and mechanical properties of the forged 316LN stainless steel was studied. Results showed that the yield stress was reduced and the residual strain was eliminated through post solution-treatment for the forged steel. After immersion in boiling MgCl2 solution for 24, 48 and 72 h, respectively, all the U-bend specimens of either the solution-treated or the stress relief-treated steels suffered from clearly transgranular stress corrosion cracking (TGSCC). Furthermore, of which all the stress relief-treated specimens were entirly cracked, while the solution-treated specimens were only locally cracked after immersion for 72 h, suggesting higher SCC resistance for the forged steel after a proper post solution-treatment. Finally, the mechanism of the effect of post-heat treatments on the SCC resistance was discussed in terms of the residual strain and yield stress of the forged steel.

Key wordsstainless steel    nuclear materials    heat treatment    stress corrosion cracking    magnesium chloride solution    fractography
    
基金资助:国家科技重大专项项目 (2011ZX06004-009) 资助

引用本文:

郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
Yueling GUO, En-Hou HAN, Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 488-495.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.223      或      https://www.jcscp.org/CN/Y2015/V35/I6/488

Sample Rp0.2 / MPa Rm / MPa A / % Z / %
S41 275 574 59.0 82
S42 317 581 49.0 81
表1  316LN不锈钢的室温力学性能
图 1  316LN不锈钢的室温拉伸断口形貌
图2  316LN不锈钢的显微组织
图3  由EBSD测得的316LN不锈钢的晶粒尺寸分布
图4  316LN不锈钢内部夹杂物
Element S41 S42
O 52.78 58.38
Al 45.93 41.62
Ca 01.29 ---
表2  由EDS-SEM得到的S41和S42内部夹杂物的化学成分
图5  由EBSD得到的316LN不锈钢的LAM分布图
图6  SCC实验之前U型样品的实物图和样品最底端表面的SEM像
图7  U型316LN不锈钢样品在沸腾MgCl2溶液中浸泡72 h后底部表面的SCC裂纹形貌
图8  316LN不锈钢在沸腾的42%MgCl2溶液中浸泡不同时间后的宏观SCC断口形貌
图9  U型样品在沸腾MgCl2溶液中浸泡72 h后的SCC断口SEM像
[1] Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65(4): 39
[2] Han E-H.Research trends on micro and nano-scale materials degradation in nuclear power plant[J]. Acta Metall. Sin., 2011, 47(7): 769
[2] (韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究—进展与趋势[J]. 金属学报, 2011, 47(7): 769)
[3] Meng F, Lu Z, Shoji T, et al.Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations[J]. Corros. Sci., 2011, 53(8): 2558
[4] Ma C, Peng Q J, Han E-H, et al.Review of stress corrosion cracking of structural materials in nuclear power plants[J]. J. Chin. Soc. Corros. Prot., 2014, 34(1): 37
[4] (马成, 彭群家, 韩恩厚等. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 37)
[5] Shoji T, Lu Z, Murakami H.Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics[J]. Corros. Sci., 2010, 52(3): 769
[6] Zinkle S J, Was G S.Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61(3): 735
[7] Andresen P L, Morra M M.IGSCC of non-sensitized stainless steels in high temperature water[J]. J. Nucl. Mater., 2008, 383(1): 97
[8] Hou J, Shoji T, Lu Z P, et al.Residual strain measurement and grain boundary characterization in the heat-affected zone of a weld joint between Alloy 690TT and Alloy 52[J]. J. Nucl. Mater., 2010, 397(1): 109
[9] Wang S, Shoji T, Kawaguchi N.Initiation of environmentally assisted cacking in high-temperature water[J]. Corrosion, 2005, 61(2): 137
[10] Garcı?a C, Martı?n F, de Tiedra P, et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels[J]. Corros. Sci., 2001, 43(8): 1519
[11] Hassani A, Habibolahzadeh A, Javadi A H, et al.Effect of strain rate on stress corrosion cracking of 316L austenitic stainless steel in boiling MgCl2 environment[J]. J. Mater. Eng. Perform., 2013, 22(6): 1783
[12] Alyousif O M, Nishimura R.The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions[J]. Corros. Sci., 2007, 49(7): 3040
[13] Poonguzhali A, Anita T, Sivaibharasi N, et al.Effect of nitrogen content on the tensile and stress corrosion cracking behavior of AISI type 316LN stainless steels[J]. Trans. Indian Inst. Met., 2014, 67(2): 177
[14] Guo Y, Han E-H, Wang J Q.Effects of forging and heat treatments on the microstructure and oxidation behavior of 316LN stainless steel in high temperature water[J]. J. Mater. Sci. Technol., 2015, 31: 403
[15] Huang Y M, Pan C X.Micro-stress-strain analysis in materials based upon EBSD technique: A review[J]. J. Chin. Electron Microsc. Soc., 2010, 29(1): 662
[15] (黄亚敏, 潘春旭. 基于电子背散射衍射(EBSD)技术的材料微区应力应变状态研究综述[J]. 电子显微学报, 2010, 29(01): 662)
[16] YB/T 5362-2006. Test method for stress corrosion-cracking resistance of stainless steels in a boiling magnesium chloride solution[S]
[16] (YB/T 5362-2006. 不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法[S])
[17] Carlsson S, Larsson P L.On the determination of residual stress and strain fields by sharp indentation testing. Part I: Theoretical and numerical analysis[J]. Acta Mater., 2001, 49(12): 2179-2191.
[18] Lu J Z, Luo K Y, Yang D K, et al.Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corros. Sci., 2012, 60: 145
[19] Wang W W, Su Y J, Yan Y, et al.The role of hydrogen in stress corrosion cracking of 310 austenitic stainless steel in a boiling MgCl2 solution[J]. Corros. Sci., 2012, 60: 275
[20] Troiano A R.The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Trans. ASM, 1960, 52(1): 54
[21] Shively J H, Hehemann R F, Troiano A R.Hydrogen permeability of a stable austenitic stainless steel under anodic polarization[J]. Corrosion, 1967, 23(7): 215
[22] Wilde B E, Kim C D.The role of hydrogen in the mechanism of stress corrosion cracking of austenitic stainless steels in hot chloride media[J]. Corrosion, 1972, 28(9): 350
[23] Qiao L J, Chu W Y, Hsiao C M, et al.Stress corrosion cracking and hydrogen-induced cracking in austenitic stainless steel under mode II loading[J]. Corrosion, 1988, 44(1): 50
[24] Nishimura R.The effect of potential on stress corrosion cracking of type 316 and type 310 austenitic stainless steels[J]. Corros. Sci., 1993, 34(9): 1463
[25] Nishimura R, Alyousif O M.A new aspect on intergranular hydrogen embrittlement mechanism of solution annealed types 304, 316 and 310 austenitic stainless steels[J]. Corros. Sci., 2009, 51(9): 1894
[26] Tromans D, Nutting J.Stress corrosion cracking of face-centered-cubic alloys[J]. Corrosion, 1965, 21(5): 143
[27] Meng F, Wang J, Han E-H, et al.Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58 ℃ and 330 ℃[J]. Corros. Sci., 2009, 51(11): 2761
[28] Shoji T, Li G, Kwon J, et al.Quantification of yield strength effects on IGSCC of austenitic stainless steels in high temperature water [A]. Proceedings of the11th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Warrendale, PA: TMS, 2003: 834
[29] Chu W Y, Qiao L J, Chen Q Z, et al.Cracking and environmentally assisted cacking [M]. Beijing: Science Press, 2000: 4
[29] (褚武扬, 乔利杰, 陈奇志等. 断裂与环境断裂 [M]. 北京: 科学出版社, 2000: 4)
[30] Terachi T, Yamada T, Miyamoto T, et al.SCC growth behaviors of austenitic stainless steels in simulated PWR primary water[J]. J. Nucl. Mater., 2012, 426(1): 59
[31] Acharyya S G, Khandelwal A, Kain V, et al.Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance[J]. Mater. Charact., 2012, 72: 68
[32] Hou J, Peng Q J, Shoji T, et al.Effects of cold working path on strain concentration, grain boundary microstructure and stress corrosion cracking in Alloy 600[J]. Corros. Sci., 2011, 53(9): 2956
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[5] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[9] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[11] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[13] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[14] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[15] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.