Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 639-646     CSTR: 32134.14.1005.4537.2022.148      DOI: 10.11902/1005.4537.2022.148
  研究报告 本期目录 | 过刊浏览 |
新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响
梁超雄, 梁小红(), 韩培德
太原理工大学材料科学与工程学院 太原 030024
Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel
LIANG Chaoxiong, LIANG Xiaohong(), HAN Peide
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(21196 KB)   HTML
摘要: 

通过动态固溶结合低温保温的新的热处理工艺调控B元素分布,研究新工艺对S31254超奥钢析出相及耐蚀性能的影响。通过SEM、EDS对时效试样析出相及元素分布进行了分析,结果显示新工艺可延后析出相的生成,改变元素分布状况,尤其对Mo分布调控作用明显,使析出相中Mo的含量远高于常规固溶处理不含和含B试样,减少了析出总量,有利于改善热加工性能。通过双环动电位活化试验 (DL-EPR) 评估新工艺处理试样的晶间腐蚀敏感性,证实了经新工艺处理可进一步提升含0.004%B试样的耐晶间腐蚀性能。

关键词 超级奥氏体不锈钢新热处理工艺硼元素分布析出相晶间腐蚀    
Abstract

Suppression of secondary phase precipitation is crucial for the improvement of hot-working character and corrosion resistance of super austenitic stainless steels (SASS). In this paper, a composite heat treatment process of dynamic solid solution treatment followed by low temperature aging was named the new heat treatment process, through which the alloying elements such as B distribution of steels can be adjusted. Hence, the effect of the new heat treatment process on the second phase precipitation and corrosion resistance of S31254 SASS was studied by means of SEM and EDS as well as CS350 electrochemical workstation. The results show that the new heat treatment process can suppress the formation of the second phase precipitation and change the distribution of alloying elements of the steel. The content of Mo in the precipitates of the sample steels 0B and 40B after treated by the new heat treatment process was much higher than those treated by the conventional solution treatment, which can result in the reduction of the total amount of precipitates and the improvement of the hot workability of the steel. The intergranular corrosion susceptibility of the sample steels treated by the new heat treatment process was evaluated by double ring potentiodynamic activation test (DL-EPR), which confirmed that the new heat treatment process can further improve the intergranular corrosion resistance of the sample steel 40B containing 0.004%B.

Key wordssuper austenitic stainless steel    new heat treatment process    boron element distribution    precipitation    intergranular corrosion
收稿日期: 2022-05-12      32134.14.1005.4537.2022.148
ZTFLH:  TG156.2  
基金资助:国家自然科学基金(51871159)
通讯作者: 梁小红,E-mail:xhliang1983@163.com,研究方向为不锈钢腐蚀与防护
Corresponding author: LIANG Xiaohong, E-mail: xhliang1983@163.com
作者简介: 梁超雄,男,1995年生,硕士生

引用本文:

梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 639-646.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.148      或      https://www.jcscp.org/CN/Y2023/V43/I3/639

SteelCSiMnPSCrNiMoCuNBFe
0B0.0100.610.430.0240.00120.1818.006.000.690.193-Bal.
40B0.0140.620.940.0140.00320.1518.116.120.720.200.004Bal.
表1  0B和40B试样的化学成分
图1  0.004%B与6%Mo在S31254超奥钢中的溶解度曲线和新热处理工艺流程图
图2  S31254超奥钢热处理之后的SEM表面形貌
图3  0B、40B和40B-SS试样在950 ℃不同时效时间的SEM形貌
图4  3种试样在950 ℃时效6 h后晶界区域周围的Fe、Cr、Ni、Mo、C和B元素分布图
图5  0B、40B和40B-SS试样析出相中Mo的占比
图6  0B、40B和40B-SS试样经950 ℃时效6 h后的DL-EPR和DOS曲线图
图7  0B、40B和40B-SS试样经950 ℃时效6 h后在DL-EPR测试后的晶间腐蚀形貌
1 Zhang S C, Li H B, Jiang Z H, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci., 2020, 163: 108295
doi: 10.1016/j.corsci.2019.108295
2 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
2 伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
3 Marin R, Combeau H, Zollinger J, et al. σ-phase formation in super austenitic stainless steel during directional solidification and subsequent phase transformations [J]. Metall. Mater. Trans., 2020, 51A: 3526
4 Liu G W, Ying H, Shi Z Q, et al. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: a study with processing map [J]. Mater. Des., 2014, 53: 662
doi: 10.1016/j.matdes.2013.07.065
5 Koutsoukis T, Redjaïmia A, Fourlaris G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng., 2013, 561A: 477
6 Hao Y S, Cao G M, Li C G, et al. The aging precipitation behavior of 20Cr-24Ni-6Mo super-austenitic stainless steel processed by conventional casting and twin-roll strip casting [J]. Mater. Charact., 2019, 147: 21
doi: 10.1016/j.matchar.2018.10.015
7 Zhang S C, Li H B, Jiang Z H, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654 [J]. Mater. Charact., 2019, 152: 141
doi: 10.1016/j.matchar.2019.04.010
8 Heino S. Role of Mo and W during sensitization of superaustenitic stainless steel—crystallography and composition of precipitates [J]. Metall. Mater. Trans., 2000, 31A: 1893
9 Liao L H, Li J Y, Zhao Z X, et al. Precipitation and phase transformation behavior during high-temperature aging of a cobalt modified Fe-24Cr-(22-x)Ni-7Mo-xCo superaustenitic stainless steel [J]. J. Mater. Sci., 2022, 57: 4771
doi: 10.1007/s10853-021-06740-1
10 Wang Q, Wang L J, Sun Y H, et al. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels [J]. J. Alloy. Compd., 2020, 815: 152418
doi: 10.1016/j.jallcom.2019.152418
11 Sharma M, Ortlepp I, Bleck W. Boron in heat‐treatable steels: a review [J]. Steel Res. Int., 2019, 90: 1900133
doi: 10.1002/srin.v90.11
12 Hu B, Trotter G, Wang Z W, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys [J]. Intermetallics, 2017, 90: 36
doi: 10.1016/j.intermet.2017.06.011
13 Jeong E H, Park S G, Kim S H, et al. Evaluation of the effect of B and N on the microstructure of 9Cr-2W steel during an aging treatment for SFR fuel cladding tubes [J]. J. Nucl. Mater., 2015, 467: 527
doi: 10.1016/j.jnucmat.2015.09.026
14 Wang J, Cui Y S, Bai J G, et al. The Mechanism on the B addition to regulate phase precipitation and improve intergranular corrosion resistance in UNS S31254 superaustenitic stainless steels [J]. J. Electrochem. Soc., 2019, 166: C600
doi: 10.1149/2.1361915jes
15 Bai J G, Cui Y S, Wang J, et al. Effect of compression deformation on precipitation phase behavior of B-containing S31254 super austenitic stainless steel [J]. J. Iron Steel Res. Int., 2019, 26: 712
doi: 10.1007/s42243-018-0194-0
16 Yu J T, Zhang S C, Li H B, et al. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112: 184
doi: 10.1016/j.jmst.2021.11.005
17 Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel [J]. Scr. Mater., 2006, 54: 1053
doi: 10.1016/j.scriptamat.2005.11.055
18 Zhang Y Q, Gu J F, Han L Z. Elemental redistribution and precipitation reactions of 9Cr1.5Mo1CoB(FB2) steel during tempering [J]. Mater. Charact., 2021, 171: 110778
doi: 10.1016/j.matchar.2020.110778
19 Mandal S, Kishore V, Bose M, et al. In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy [J]. J. Mater. Sci. Technol., 2021, 84: 159
doi: 10.1016/j.jmst.2020.12.029
20 Han J, Zhu Z X, Wei G, et al. Microstructure and mechanical properties of Nb- and Nb+ Ti-Stabilised 18CrMo Ferritic stainless steels [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 716
doi: 10.1007/s40195-019-00988-y
21 Jin W S, Lang Y P, Rong F, et al. Research of EPR on the susceptibility to intergranular attack of austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 54
21 金维松, 郎宇平, 荣 凡 等. EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究 [J]. 中国腐蚀与防护学报, 2007, 27: 54
22 Li H, Xia S, Liu W Q, et al. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys [J]. J. Nucl. Mater., 2013, 439: 57
doi: 10.1016/j.jnucmat.2013.03.067
23 Blavette D, Duval P, Letellier L, et al. Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in Astroloy nickel base superalloys [J]. Acta Mater., 1996, 44: 4995
doi: 10.1016/S1359-6454(96)00087-0
24 Cadel E, Lemarchand D, Chambreland S, et al. Atom probe tomography investigation of the microstructure of superalloys N18 [J]. Acta Mater., 2002, 50: 957
doi: 10.1016/S1359-6454(01)00395-0
25 Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control [J]. Corros. Sci., 2011, 53: 1880
doi: 10.1016/j.corsci.2011.02.005
[1] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[2] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[3] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[4] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[5] 包晔峰, 武竹雨, 陈哲, 郭林坡, 王子睿, 曹冲, 宋亓宁. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[6] 李凤铭, 侯嘉鹏, 谢光宗, 吴细毛, 王强, 张哲峰. 大变形量高强高导Al-Mg-Si合金线的腐蚀机制研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1002-1008.
[7] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[11] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[12] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[13] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[14] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[15] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.