Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 347-353    DOI: 10.11902/1005.4537.2016.046
  研究报告 本期目录 | 过刊浏览 |
Zn-7Mg合金热处理显微组织演变及耐蚀性能研究
牛振国1,2, 郭浦山1, 叶宏2, 杨丽景1(), 许赪1, 宋振纶1
1 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 宁波 315201
2 重庆理工大学 材料科学与工程学院 重庆 400054
Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment
Zhenguo NIU1,2, Pushan GUO1, Hong YE2, Lijing YANG1(), Cheng XU1, Zhenlun SONG1
1 Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
全文: PDF(4927 KB)   HTML
摘要: 

研究了可降解Zn-7Mg合金经不同时间热处理后的显微组织演变及耐蚀性能。设计了锌镁合金Zn-7Mg材料,通过改变热处理时间获得Mg2Zn11相。通过EDS和ICP确定了锌镁合金的成分,运用OM和SEM分析合金的微观组织,利用XRD谱表征合金的物相组成,采用电化学方法测试合金的耐蚀性能。结果表明,Zn-7Mg合金在铸态时主要由α-Zn和MgZn2两相组成,热处理时包晶反应迅速发生。Zn-7Mg合金热处理后的平衡组织为Mg2Zn11相和少量残余的MgZn2相;电化学开路电位和电化学阻抗谱分析表明,Mg2Zn11在PBS溶液中的耐腐蚀性能较纯Zn差,在实际生产中应避免Mg2Zn11的产生。

关键词 锌合金热处理显微组织腐蚀    
Abstract

Microstructure evolution and corrosion behavior of a degradable Zn-7Mg alloy after heat treatment was investigated by means of inductively coupled plasma emission spectrometer (ICP) and energy dispersive spectrometer (EDS), optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD) as well as electrochemical test in phosphate buffered saline (PBS). Results indicated that, the microstructure of the as-cast Zn-7Mg alloy was mainly composed of α-Zn and MgZn2, while the peritectic reaction occurred rapidly during heat treatment. After heat treatment the Zn-7Mg alloy was composed of stable phase Mg2Zn11 and a little of residual MgZn2. The phase Mg2Zn11 showed lower corrosion resistance in PBS solution than the pure zinc, therefore, the phase Mg2Zn11 should be avoided in actual production.

Key wordsZn alloy    heat treatment    microstructure    corrosion
收稿日期: 2016-04-06     
ZTFLH:  TG146.1+3  
基金资助:国家自然科学基金 (51301193),浙江省公益项目 (2015C31031) 和宁波市自然科学基金 (2015A610070)
作者简介:

作者简介 牛振国,男,1987年生,硕士生

引用本文:

牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 347-353.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.046      或      https://www.jcscp.org/CN/Y2017/V37/I4/347

图1  Zn-7Mg合金铸态金相显微组织
图2  Mg-Zn二元合金相图[25]
图3  铸态锌镁合金的SEM像
Point C O Mg Zn Total
1 7.29 3.04 12.54 77.13 100
2 7.69 3.23 0.34 88.74 100
表1  图3中不同位置的EDS结果
图4  不同热处理时间后Zn-7Mg合金的XRD谱
图5  Zn-7Mg合金经不同时间热处理后的金相组织
图6  Zn-7Mg合金经不同时间热处理后的SEM像
Point Mg Zn Total
1 0.12 99.88 100
2 7.24 92.76 100
3 15.44 84.56 100
表2  图6a中不同位置的EDS分析结果
图7  纯Zn和Mg2Zn11在PBS溶液中的开路电位曲线
图8  纯Zn和Mg2Zn11的电化学阻抗谱及等效电路
Material R1 / Ωcm2 Q R2 / Ωcm2 W / μFcm-2
P / μFcm-2 n
Pure Zn 4.49 150.6 0.80 3303 801
Mg2Zn11 12.48 241.2 0.59 1161 1960
表3  等效电路元件拟合值
图9  纯Zn和Mg2Zn11的电化学极化曲线
[1] Tan L L, Yu X M, Wan P, et al.Biodegradable materials for bone repairs: A review[J]. J. Mater. Sci. Technol., 2013, 29: 503
[2] Moravej M, Mantovani D.Biodegradable metals for cardiovascular stent application: Interests and new opportunities[J]. Int. J. Mol. Sci., 2011, 12: 4250
[3] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng. R-Rep., 2014, 77R: 1
[4] Li H, Zheng Y, Qin L.Progress of biodegradable metals[J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 414
[5] Zhang W J, Li M H, Chen Q, et al.Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications[J]. Mater. Des., 2012, 39: 379
[6] Li H F, Pang S J, Liu Y, et al.Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications[J]. Mater. Des, 2015, 67: 9
[7] Bowen P K, Drelich J, Goldman J.A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior[J]. Mater. Sci. Eng., 2013, C33: 5064
[8] Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955
[9] Liu B, Zheng Y F.Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomater., 2011, 7: 1407
[10] Purnama A, Hermawan H, Champetier S, et al.Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents[J]. Acta Biomater., 2013, 9: 8746
[11] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[12] Zeng R, Dietzel W, Witte F, et al.Progress and challenge for magnesium alloys as biomaterials[J]. Adv. Eng. Mater., 2008, 10: B3
[13] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[14] Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43
[15] Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705
[16] Haase H, Rink L.Zinc signals and immune function[J]. Biofactors, 2014, 40: 27
[17] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[18] Vojtěch D, Kubasek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater., 2011, 7: 3515
[19] Yao C Z, Wang Z C, Tay S L, et al.Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy[J]. J. Alloy. Compd.,2014, 602: 101
[20] Gong H B, Wang K, Strich R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. J. Biomed. Mater. Res. Part B, 2015, 103: 1632
[21] Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719
[22] Li H F, Yang H T, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95
[23] Kubásek J, Vojtěch D, Jablonská E, et al.Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J]. Mater. Sci. Eng., 2016, C58: 24
[24] Dambatta M S, Izman S, Kurniawan D, et al.Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J]. Mater. Des., 2015, 85: 431
[25] Nagasaki S, Hirabayashi M.Translated by Liu A S. Binary Alloy Phase-diagrams [M]. Beijing: Metallurgical Industry Press, 2004(长崎诚三, 平林真著. 刘安生译. 二元合金状态图集 [M]. 北京: 冶金工业出版社, 2004)
[26] Prosek T, Nazarov A, Bexell U, et al.Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions[J]. Corros. Sci., 2008, 50: 2216
[27] Cao C N, Zhang J Q.An introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.