|
|
Zn-7Mg合金热处理显微组织演变及耐蚀性能研究 |
牛振国1,2, 郭浦山1, 叶宏2, 杨丽景1( ), 许赪1, 宋振纶1 |
1 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 宁波 315201 2 重庆理工大学 材料科学与工程学院 重庆 400054 |
|
Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment |
Zhenguo NIU1,2, Pushan GUO1, Hong YE2, Lijing YANG1( ), Cheng XU1, Zhenlun SONG1 |
1 Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 2 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China |
引用本文:
牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
Zhenguo NIU,
Pushan GUO,
Hong YE,
Lijing YANG,
Cheng XU,
Zhenlun SONG.
Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 347-353.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2016.046
或
https://www.jcscp.org/CN/Y2017/V37/I4/347
|
[1] | Tan L L, Yu X M, Wan P, et al.Biodegradable materials for bone repairs: A review[J]. J. Mater. Sci. Technol., 2013, 29: 503 | [2] | Moravej M, Mantovani D.Biodegradable metals for cardiovascular stent application: Interests and new opportunities[J]. Int. J. Mol. Sci., 2011, 12: 4250 | [3] | Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng. R-Rep., 2014, 77R: 1 | [4] | Li H, Zheng Y, Qin L.Progress of biodegradable metals[J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 414 | [5] | Zhang W J, Li M H, Chen Q, et al.Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications[J]. Mater. Des., 2012, 39: 379 | [6] | Li H F, Pang S J, Liu Y, et al.Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications[J]. Mater. Des, 2015, 67: 9 | [7] | Bowen P K, Drelich J, Goldman J.A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior[J]. Mater. Sci. Eng., 2013, C33: 5064 | [8] | Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955 | [9] | Liu B, Zheng Y F.Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomater., 2011, 7: 1407 | [10] | Purnama A, Hermawan H, Champetier S, et al.Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents[J]. Acta Biomater., 2013, 9: 8746 | [11] | Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728 | [12] | Zeng R, Dietzel W, Witte F, et al.Progress and challenge for magnesium alloys as biomaterials[J]. Adv. Eng. Mater., 2008, 10: B3 | [13] | Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680 | [14] | Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43 | [15] | Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705 | [16] | Haase H, Rink L.Zinc signals and immune function[J]. Biofactors, 2014, 40: 27 | [17] | Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577 | [18] | Vojtěch D, Kubasek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater., 2011, 7: 3515 | [19] | Yao C Z, Wang Z C, Tay S L, et al.Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy[J]. J. Alloy. Compd.,2014, 602: 101 | [20] | Gong H B, Wang K, Strich R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. J. Biomed. Mater. Res. Part B, 2015, 103: 1632 | [21] | Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719 | [22] | Li H F, Yang H T, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95 | [23] | Kubásek J, Vojtěch D, Jablonská E, et al.Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J]. Mater. Sci. Eng., 2016, C58: 24 | [24] | Dambatta M S, Izman S, Kurniawan D, et al.Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J]. Mater. Des., 2015, 85: 431 | [25] | Nagasaki S, Hirabayashi M.Translated by Liu A S. Binary Alloy Phase-diagrams [M]. Beijing: Metallurgical Industry Press, 2004(长崎诚三, 平林真著. 刘安生译. 二元合金状态图集 [M]. 北京: 冶金工业出版社, 2004) | [26] | Prosek T, Nazarov A, Bexell U, et al.Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions[J]. Corros. Sci., 2008, 50: 2216 | [27] | Cao C N, Zhang J Q.An introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|