Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 588-594    DOI: 10.11902/1005.4537.2018.161
  研究报告 本期目录 | 过刊浏览 |
热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响
张瑞1,李雨2(),关蕾3,王冠3,王福雨1
1. 沈阳飞机设计研究所 沈阳 110035
2. 广东省工业分析检测中心 广州 510650
3. 广东工业大学机电工程学院 广州 510006
Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy
ZHANG Rui1,LI Yu2(),GUAN Lei3,WANG Guan3,WANG Fuyu1
1. Shenyang Aircraft Design & Research Institute, Shenyang 110035, China
2. Guangdong Industrial Analysis and Testing Center, Guangzhou 510650, China
3. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
全文: PDF(2585 KB)   HTML
摘要: 

通过激光选区熔化技术制备沉积态的Ti6Al4V合金,并在800 ℃下进行热处理,优化组织结构,探索两种状态下Ti6Al4V合金在3.5% (质量分数) NaCl溶液中的电化学腐蚀行为。结果表明,沉积态的Ti6Al4V合金相组织主要由细针状α'马氏体相以及初生β相组成;而经热处理后,转变为板条状的α相+剩余β相,组织更为均匀、单一。电化学测试结果表明,两种状态的Ti6Al4V合金在3.5%NaCl溶液中均发生自发钝化。热处理对合金表面阴极过程没有明显影响,但通过降低阳极反应速率使开路电位及自腐蚀电位升高,自腐蚀电流密度下降至沉积态的1/5。两种状态下Ti6Al4V合金表面均可形成致密钝化膜,且热处理后表面形成的钝化膜更致密、更厚。热处理后合金表面极化电阻值约是沉积态的3.8倍,表明钝化膜保护性更为优异。这一结果表明,热处理可显著优化合金组织结构,提高激光熔化技术制备的Ti6Al4V合金耐蚀性。在较为苛刻的服役环境中,建议采用热处理态的合金作为结构件。

关键词 激光选区熔化热处理Ti6Al4V电化学腐蚀钝化膜    
Abstract

Ti6Al4V alloy was selectively laser melted (SLM) to produce the deposited alloy and which was subsequently heat treated at 800 ℃ to optimize its microstructure. The electrochemical corrosion behavior of the as deposited and post-heat treated Ti6Al4V alloys was investigated in 3.5% (mass fraction) NaCl solution. The results show that the as deposited alloy composes of dominantly acicular α'-martensite and some prior β-grains. After heat treatment, the microstructure transforms to a combination of lath-like α-phase and residual β-phase. Both alloys exhibit spontaneous passivation in 3.5%NaCl solution. Based on the polarization behavior, it is evident that the influence of heat treatment on the cathodic process is insignificant. However, the anodic reaction rate is greatly reduced, which results in the significant decrease of corrosion rate and ennoblement of open circuit potential and corrosion potential. In both cases, a protective film on the alloy surface is confirmed. However, the passive film formed on the heat-treated alloy is much thicker and compact. The polarization resistance of Ti6Al4V alloy after heat treatment is 3.8 times higher than that of the as deposited ones. Our results suggest that the as deposited Ti6Al4V alloy produced by SLM should undergo suitable heat treatment in order to prolong its service life in corrosive circumstances.

Key wordsselective laser melting    heat treatment    Ti6Al4V    electrochemical corrosion    passive film
收稿日期: 2018-11-04     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51701047)
通讯作者: 李雨     E-mail: yuli11s@alum.imr.ac.cn
Corresponding author: Yu LI     E-mail: yuli11s@alum.imr.ac.cn
作者简介: 张瑞,男,1988年生,硕士生

引用本文:

张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
Rui ZHANG, Yu LI, Lei GUAN, Guan WANG, Fuyu WANG. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 588-594.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.161      或      https://www.jcscp.org/CN/Y2019/V39/I6/588

图1  SLM态及HT态Ti6Al4V合金的显微组织
图2  SLM态及HT态Ti6Al4V合金在3.5%NaCl溶液中OCP随浸泡时间变化的关系
图3  SLM态及HT态Ti6Al4V合金在3.5%NaCl溶液中的典型动电位极化曲线
Alloy

Ecorr

mV (vs SCE)

-βc

mV·dec-1

Icorr

μA·cm-2

Ipass

μA·cm-2

SLM?405±19261±130.35±0.015.8±0.1
HT?497±22282±80.07±0.013.2±0.3
表1  由动电位极化曲线得出的SLM态及HT态Ti6Al4V合金在3.5%NaCl溶液中的电化学参数
图4  SLM态及HT态Ti6Al4V合金在0.6 V (vs SCE)下极化1 h表面钝化膜生成过程的lgi-lgt图
图5  SLM态及HT态Ti6Al4V合金在0.6 V(vs SCE) 下极化1 h后的Nyquist图,Bode图以及拟合所用的等效电路图
AlloyRs / Ω·cm2Rct / kΩ·cm2Qdl / μΩ-1·sn·cm-2n1Rf / kΩ·cm2Qf / μΩ-1·sn·cm-2n2
SLM6.4±0.43.3±0.83.5±1.00.87±0.0157.4±6.112.1±2.80.91±0.01
HT6.9±0.87.8±0.62.2±0.70.88±0.01227.6±18.39.2±1.50.92±0.01
表2  SLM态及HT态Ti6Al4V合金在0.6 V(vs SCE) 下极化1 h后等效电路拟合的元件参数
[1] Zhang X, Ge J B. The manufacture application of laser forming technology in the large titanium aircraft parts [J]. Appl. Laser, 2018, 38: 202
[1] (张讯, 葛建彪. 激光成形技术在飞机大型钛合金部件上的制造应用 [J]. 应用激光, 2018, 38: 202)
[2] Wang Y F, He L, Guo W. The development actuality and trend of aircraft titanium materials [J]. Adv. Mater. Ind., 2015, (11): 63
[2] (王运锋, 何蕾, 郭薇. 飞机用钛材的发展现状及趋势 [J]. 新材料产业, 2015, (11): 63)
[3] Wang X M, Su Y D, Wu B. Application of additive manufacturing technology on aircraft structure development [J]. Aeronaut. Manuf. Technol., 2014, (22): 16
[3] (王向明, 苏亚东, 吴斌. 增材技术在飞机结构研制中的应用 [J]. 航空制造技术, 2014, (22): 16)
[4] Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts [J]. Laser Optoelectr. Prog., 2018, 55: 011401
[4] (杨永强, 陈杰, 宋长辉等. 金属零件激光选区熔化技术的现状及进展 [J]. 激光与光电子学进展, 2018, 55: 011401)
[5] Ren Y M, Lin X, Huang W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46: 3160
[5] (任永明, 林鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46: 3160)
[6] Tao C H, Liu C K. Corrosion failure and prevention of carrier-based aircraft [J]. Mater. China, 2014, 33: 623
[6] (陶春虎, 刘昌奎. 舰载机的腐蚀失效及其预防 [J]. 中国材料进展, 2014, 33: 623)
[7] Xu L, Chen Y L, Wu S G, et al. The study about the deck park environment of carrier-based aircraft and corrosive state [J]. Aircraft Des., 2016, 36(6): 54
[7] (徐丽, 陈跃良, 武书阁等. 舰载机舰面停放环境及腐蚀情况研究 [J]. 飞机设计, 2016, 36(6): 54)
[8] Pourbaix M. Electrochemical corrosion of metallic biomaterials [J]. Biomaterials, 1984, 5: 122
[9] Wang H J, Wang J, Peng X, et al. Corrosion behavior of three titanium alloys in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 75
[9] (王海杰, 王佳, 彭欣等. 钛合金在3.5%NaCl溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 75)
[10] Dai N W, Zhang L C, Zhang J X, et al. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes [J]. Corros. Sci., 2016, 111: 703
[11] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
[11] (王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690)
[12] Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties [J]. J. Alloy. Compd., 2012, 541: 177
[13] Li J, Liu M, Ma W Y, et al. Effects of process parameters and post-heat treatment on the properties of selective laser melted Ti6Al4V [J]. Appl. Laser, 2017, 37: 779
[13] (李敬, 刘敏, 马文有等. 工艺参数及热处理对选区激光熔化Ti6Al4V性能的影响研究 [J]. 应用激光, 2017, 37: 779)
[14] Li Y, Xu J. Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? [J]. Electrochim. Acta, 2017, 233: 151
[15] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions [M]. Houston, Texas: National Association of Corrosion, 1974
[16] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
[16] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[17] Wang Z B, Hu H X, Zheng Y G. Determination and explanation of the pH-related critical fluoride concentration of pure titanium in acidic solutions using electrochemical methods [J]. Electrochim. Acta, 2015, 170: 300
[18] Liu L, Li Y, Wang F H. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta, 2007, 52: 2392
[19] Liu L, Li Y, Wang F H. Electrochemical corrosion behavior of nanocrystallized materials: Growth of passive film and local pitting corrosion [J]. Acta Metall. Sin., 2014, 50: 212
[19] (刘莉, 李瑛, 王福会. 钝性纳米金属材料的电化学腐蚀行为研究: 钝化膜生长和局部点蚀行为 [J]. 金属学报, 2014, 50: 212)
[20] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
[21] Martin é, Azzi M, Salishchev G A, et al. Influence of microstructure and texture on the corrosion and tribocorrosion behavior of Ti-6Al-4V [J]. Tribol. Int., 2010, 43: 918
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[5] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[7] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[8] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[9] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[10] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[11] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[12] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[13] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[14] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[15] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.