Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 332-341    DOI: 10.11902/1005.4537.2019.198
  研究报告 本期目录 | 过刊浏览 |
不同类型接触面对316L不锈钢缝隙腐蚀的影响
赵柏杰1, 范益1, 李镇镇2, 张博威2(), 程学群2
1.南京钢铁股份有限公司 江苏省高端钢铁材料重点实验室 南京 210035
2.北京科技大学 新材料技术研究院 教育部腐蚀与防护重点实验室 北京 100083
Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials
ZHAO Baijie1, FAN Yi1, LI Zhenzhen2, ZHANG Bowei2(), CHENG Xuequn2
1. Jiangsu Key Laboratory for Premium Steel Materials, Nanjing Iron & Steel United Co. , Ltd. , Nanjing 210035, China
2. Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(16979 KB)   HTML
摘要: 

分别设计了金属-金属、金属-四氟乙烯、金属-橡胶、金属-塑料薄膜4种接触类型,探究不同类型接触面对不锈钢缝隙腐蚀的影响。对316L奥氏体不锈钢的缝隙构型进行FeCl3浸泡实验和电化学实验,研究了其对缝隙腐蚀行为的影响,通过激光共聚焦显微镜对缝隙腐蚀后样品的宏观形貌进行了研究。结果表明,金属-金属接触面条件下腐蚀形貌宽度最大,深度最浅,蚀坑横向发展,蚀坑达到一定深度后,腐蚀溶液横向扩散更容易。金属-橡胶接触面下腐蚀形貌宽度最小,深度最大,蚀坑纵向发展,这与橡胶所受应力有关,始终紧贴样品表面,腐蚀溶液不易发生横向扩散。电化学测试表明,不同类型接触面缝隙试样的破钝化电位相对于无缝隙试样均有明显降低。

关键词 缝隙腐蚀不锈钢接触面浸泡    
Abstract

316 stainless steel pate was paired face by face with four plates of different materials respectively, i.e. 316SS, tetrafluoroethylene, rubber and plastic, and then the crevice corrosion behavior of the 316SS for the above four pairs was assessed via immersion test in FeCl3 solution, while the relevant electrochemical performance was examined in an artificial seawater. After corrosion test, the samples were examined by laser confocal microscopy. Results show that among others, the pair 316SS/316SS presented the widest corrosion area with the most shallow depth, indicating that the corrosion pits tended to spread preferentially sideways. When the corrosion pits reach a certain depth, the lateral migration of corrosive solution got easier. The corrosion morphology of the pair 316SS/rubber showed the minimum width with the maximum depth, suggesting the longitudinal development of the corrosion pit, which is related to the stress applied on the rubber. In that case, the corrosive medium is closely attached to the steel surface, hence hard to migrate laterally into the gab, thereby the corrosion expanded vertically in depth. Furthermore, the relevant mechanisum of crevice corrosion for different type of pairings was analyzed through electrochemical measurements.

Key wordscrevice corrosion    stainless steel    contact surface    immersion
收稿日期: 2019-11-04     
ZTFLH:  TB304  
基金资助:国家自然科学基金青年科学基金(51901018);中国博士后科学基金(2019M660456);中央高校基本科研业务费(06500119)
通讯作者: 张博威     E-mail: bwzhang@ustb.edu.cn
Corresponding author: ZHANG Bowei     E-mail: bwzhang@ustb.edu.cn
作者简介: 赵柏杰,男,1965年生,硕士,高级工程师

引用本文:

赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
Baijie ZHAO, Yi FAN, Zhenzhen LI, Bowei ZHANG, Xuequn CHENG. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 332-341.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.198      或      https://www.jcscp.org/CN/Y2020/V40/I4/332

图1  316L不锈钢试样封装示意图
图2  缝隙腐蚀试样装配图
图3  电化学测量接线示意图
图4  金属-金属接触面试样腐蚀形貌图
图5  金属-金属接触面微观形貌的轮廓曲线
图6  金属-聚四氟乙烯片接触面的腐蚀形貌图
图7  金属-聚四氟乙烯片接触面微观形貌的轮廓曲线
图8  金属-橡胶接触面的腐蚀形貌图
图9  金属-橡胶接触面微观形貌的轮廓曲线
图10  金属-塑料薄膜接触面的腐蚀形貌图
图11  金属-塑料薄膜接触面微观形貌的轮廓曲线
图12  不同接触面类型及无缝隙试样的极化曲线
图13  不同类型接触面缝隙试样的极化曲线
图14  不同类型接触面缝隙试样经极化曲线测试后的SEM像
[1] Han D. Investigation on the mechanism of localized electrochemical corrosion behavior of duplex stainless stee [D]. Shanghai: Fudan University, 2012: 10
[1] (韩冬. 双相不锈钢局部电化学失效行为与机理的研究 [D]. 上海: 复旦大学, 2012: 10)
[2] Liu D X. Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 128
[2] (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 128)
[3] Ke W. Corrosion Investigation Report of China [M]. Beijing: Chemical Industry Press, 2003: 5
[3] (柯伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003: 5)
[4] Xiao J M, Cao C N. Theory of Material Corrosion [M]. Beijing: Chemical Industry Press, 2002: 44
[4] (肖纪美, 曹楚南. 材料腐蚀学原理 [M]. 北京: 化学工业出版社, 2002: 44)
[5] Wu J. Corrosion damage and protection technology of stainless steel (II) Crevice corrosion [J]. Corros. Prot., 1998, 18(2): 41
[5] (吴剑. 不锈钢的腐蚀破坏与防蚀技术——(二)缝隙腐蚀 [J]. 腐蚀与防护, 1998, 18(2): 41)
[6] Al-Malahy K S E, Hodgkiess T. Comparative studies of the seawater corrosion behaviour of a range of materials [J]. Desalination, 2003, 158: 35
doi: 10.1016/S0011-9164(03)00430-2
[7] Malik A U, Ahmad S, Andijani I, et al. Corrosion behavior of steels in gulf seawater environment [J]. Desalination, 1999, 123: 205
doi: 10.1016/S0011-9164(99)00078-8
[8] Li X G. Introduction to Corrosion and Protection of Material [M]. 2nd Ed. Beijing: China Mechine Press, 2017
[8] (李晓刚. 材料腐蚀与防护概论 [M]. 第2版. 北京: 机械工业出版社, 2017)
[9] Bao Q N. The relationship between chloride ion and the corrosion of stainless steel in cooling water system [J]. Ind. Water Treat., 2007, 27(9): 1
[9] (鲍其鼐. 氯离子与冷却水系统中不锈钢的腐蚀 [J]. 工业水处理, 2007, 27(9): 1)
[10] Li M Y, Cui R X, Wei Y Q. A comparison of crevice corrosion behaviors of two stainless steels [J]. Contemp. Chem. Ind., 2008, 37(2): 119
[10] (李美英, 崔荣星, 魏亚秋. 两种典型不锈钢的缝隙腐蚀敏感性对比研究 [J]. 当代化工, 2008, 37(2): 119)
[11] Jakobsen P T, Maahn E. Temperature and potential dependence of crevice corrosion of AISI 316 stainless steel [J]. Corros. Sci., 2001, 43(9): 1693
doi: 10.1016/S0010-938X(00)00167-0
[12] Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065
doi: 10.1016/j.corsci.2011.08.012
[13] Chen D, Wu X, Han E-H, et al. Oxidation behavior of 304 stainless steel during crevice corrosion in high-temperature pure water [J]. Corrosion, 2015, 71(10): 1213
doi: 10.5006/1705
[14] Larché N, Thierry D, Debout V, et al. Crevice corrosion of duplex stainless steels in natural and chlorinated seawater [J]. Revue de Métall, 2011, 108: 451
doi: 10.1051/metal/2011080
[15] Rowlands J C. Crevice corrosion of stainless steels and nickel alloys under marine conditions [J]. Br. Corros. J., 1976, 11: 195
doi: 10.1179/000705976798319694
[16] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
[16] (王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[17] Yu X F. Study of the intergranular corrosion of stainless steel (304, 316) by experimental and theoretical methods [D]. Ji’nan: Shandong University, 2010: 32
[17] (于晓飞. 304、316不锈钢晶间腐蚀的实验与理论研究 [D]. 济南: 山东大学, 2010: 32)
[18] Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
[18] (陈兴伟, 吴建华, 王佳等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
[19] Yang D J, Shen Z S. Corrosion Science of Metal [M]. 2nd Ed. Beijing: Metallurgical Industry Press, 1999: 57
[19] (杨德钧, 沈卓身. 金属腐蚀学 [M]. 第2版. 北京: 冶金工业出版社, 1999: 57)
[20] Li H B, Jiang Z H, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels [J]. Int. J. Miner. Metall. Mater., 2009, 16: 517
doi: 10.1016/S1674-4799(09)60090-X
[21] Fan Q Q. Corrosion behaviors of 316L austenitic stainless steel [J]. Total Corros. Control, 2013, (11): 39
[21] (范强强. 316L奥氏体不锈钢的腐蚀行为 [J]. 全面腐蚀控制, 2013, (11): 39)
[22] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
[23] Hou J G, An W J, Chang W, et al. Simulating study of the influence of crude oil on CO2 corrosion [J]. China Offshore Oil Gas, 2005, 17: 60
[23] (侯建国, 安维杰, 常炜等. 原油对CO2腐蚀影响的模拟研究 [J]. 中国海上油气, 2005, 17: 60)
[24] Cai B, Liu Y, Tian X, et al. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater [J]. Corros. Sci., 2010, 52(10): 3235
doi: 10.1016/j.corsci.2010.05.040
[25] ASTM. ASTM G48-03 Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution [S]. West Conshohocken, PA: ASTM, 2003: 32
[26] Kain R M. Effects of surface finish on the crevice corrosion resistance of stainless steels in seawater and related environments [A]. CORROSION/91 [C]. Houston: 1991
[27] Larché N, Boillot P, Dezerville P, et al. Crevice corrosion performance of high-alloy stainless steels and Ni-based alloy in desalination industry [J]. Desalin. Water Treat., 2014, 55: 2491
doi: 10.1080/19443994.2014.968906
[28] Song Y Q, Du C W, Zhang X, et al. Influence of Cl- concentration on crevice corrosion of X70 pipeline steel [J]. Acta Metall. Sin., 2009, 45: 1130
[28] (宋义全, 杜翠薇, 张新等. Cl-浓度对X70管线钢缝隙腐蚀的影响 [J]. 金属学报, 2009, 45: 1130)
[29] Zhao Y X, Yao L A, Gan F X. A study of crevice corrosion of titanium [J]. J. Chin. Soc. Corros. Prot., 1990, 10: 252
[29] (赵永新, 姚禄安, 甘复兴. 钛缝隙腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 1990, 10: 252)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[10] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[14] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[15] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.