Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 342-350    DOI: 10.11902/1005.4537.2019.234
  研究报告 本期目录 | 过刊浏览 |
交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响
胡露露1, 赵旭阳2, 刘盼1, 吴芳芳2, 张鉴清1, 冷文华1(), 曹发和1,3()
1.浙江大学化学系 杭州 310027
2.浙江华电器材检测研究所有限公司 浙江省高处作业防护技术研究重点实验室 杭州 310015
3.中山大学材料学院 广州 510006
Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy
HU Lulu1, ZHAO Xuyang2, LIU Pan1, WU Fangfang2, ZHANG Jianqing1, LENG Wenhua1(), CAO Fahe1,3()
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory for Protection Technology of High-Rise Operation, Zhejiang Huadian Equipment Testing Institute Co. Ltd. , Hangzhou 310015, China
3. School of Materials, Sun Yat-sen University, Guangzhou 510006, China
全文: PDF(9179 KB)   HTML
摘要: 

采用电化学阻抗谱、开路电位测试和阴极极化曲线,结合扫描电镜成像分析,研究了模拟大气环境不同液膜厚度和交流电场对A6082-T6铝合金腐蚀行为的影响。结果表明:降低液膜厚度加速了铝合金A6082-T6的腐蚀,交流电场显著改变了铝合金局部腐蚀形态,从大量点蚀转变成出现严重的剥蚀。

关键词 交流电场液膜厚度铝合金腐蚀行为电化学阻抗谱微观形貌    
Abstract

The effect of alternating electric field on the corrosion behavior of A6082-T6 Al-alloy in an artificial atmospheric environment, namely, an electrolyte film on the surface of Al-alloy is studied by means of electrochemical impedance spectroscopy, open circuit potential and cathodic polarization curve measurements, as well as scanning electron microscopy. The results show that, with the decreasing of thickness of electrolyte film, the corrosion rate of A6082-T6 Al-alloy was accelerated. Meanwhile, the applied AC electric field could clearly alter the morphology of localized corrosion type of A6082-T6 Al-alloy, namely transformed from pitting corrosion with a large number of pits to serious exfoliation corrosion.

Key wordsalternating electric field    thickness of electrolyte layer    aluminum alloy    corrosion behavior    EIS    microscopic morphology
收稿日期: 2019-11-25     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51771174);国家材料腐蚀与防护科学数据中心资助
通讯作者: 冷文华,曹发和     E-mail: lengwh@zju.edu.cn;caofh5@mail.sysu.eud.cn
Corresponding author: LENG Wenhua,CAO Fahe     E-mail: lengwh@zju.edu.cn;caofh5@mail.sysu.eud.cn
作者简介: 胡露露,女,1993年生,硕士生

引用本文:

胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
Lulu HU, Xuyang ZHAO, Pan LIU, Fangfang WU, Jianqing ZHANG, Wenhua LENG, Fahe CAO. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 342-350.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.234      或      https://www.jcscp.org/CN/Y2020/V40/I4/342

图1  外加交流电场的薄液膜装置示意图
图2  A6082-T6铝合金在本体溶液以及典型薄液膜厚度溶液中浸泡72 h的Nyquist和Bode图
图3  铝合金A6082-T6在3.5%NaCl溶液中电化学阻抗谱拟合用等效电路图
图4  A6082-T6铝合金在含3.5%NaCl不同厚度薄液膜下电化学阻抗谱拟合的Rct及Rf+Rct的变化曲线
图5  在本体3.5%NaCl溶液及不同厚度薄液膜体系中浸泡20 min后施加不同交流电场对A6082-T6铝合金开路电位的影响
图6  不同交流电场下铝合金在3.5%NaCl本体溶液和不同厚度薄液膜下的阴极极化曲线和-1.0 V极限扩散电流
图7  A6082-T6铝合金在3.5%NaCl本体溶液及不同厚度薄液膜下浸泡72 h后的SEM像和薄液膜厚度为160 μm下的EDS结果
图8  A6082-T6铝合金在外加20 kV/m的交流电场下3.5%NaCl本体溶液及不同厚度薄液膜下浸泡12 h后的SEM像和液膜厚度为250 μm时样品的EDS结果
图9  A6082-T6铝合金在外加60 kV/m交流电场的3.5%NaCl本体溶液及不同厚度薄液膜下浸泡12 h后的SEM像和液膜厚度为150 μm时样品的EDS结果
图10  A6082-T6铝合金在外加100 kV/m的交流电场下3.5%NaCl本体溶液及不同厚度薄液膜下浸泡12 h后的SEM像和在本体溶液中浸泡样品的EDS结果
[1] Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods [J]. Corros. Sci., 2012, 59: 324
doi: 10.1016/j.corsci.2012.03.019
[2] Panagopoulos C N, Georgiou E P, Gavras A G. Corrosion and wear of 6082 aluminum alloy [J]. Tribol. Int., 2009, 42: 886
doi: 10.1016/j.triboint.2008.12.002
[3] Shang B D, Shi Z M, Wang G, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy [J]. Mater. Des., 2011, 32: 3818
doi: 10.1016/j.matdes.2011.03.016
[4] Ralston K D, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminium [J]. Electrochim. Acta, 2011, 56: 1729
doi: 10.1016/j.electacta.2010.09.023
[5] Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
[6] Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
doi: 10.1016/j.corsci.2008.03.006
[7] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
[8] Deepa P, Padmalatha R. Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media [J]. Arab. J. Chem., 2017, 10 (Suppl.2): S2234
doi: 10.1016/j.arabjc.2013.07.059
[9] Tian W M, Li S M, Wang B, et alPitting corrosion of naturally aged AA 7075 aluminum alloys with bimodal grain size [J]. Corros. Sci., 2016, 113: 1
[10] Cao M, Liu L, Yu Z F, et al. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35: 651
doi: 10.1016/j.jmst.2018.09.060
[11] Qu Q, Yan C W, Wan W, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44: 2789
doi: 10.1016/S0010-938X(02)00076-8
[12] Šekularac G, Milošev I. Corrosion of aluminium alloy AlSi7Mg0.3 in artificial sea water with added sodium sulphide [J]. Corros. Sci., 2018, 144: 54
doi: 10.1016/j.corsci.2018.08.038
[13] Tan T, Chen T, Zhang J X, et al. Corrosion behavior of galvanized steel in different simulated service environments [J]. Corros. Prot., 2014, 35: 307
[13] (谈天, 陈彤, 张俊喜等. 镀锌钢在模拟不同服役环境中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 307)
[14] Huang H L, Tian J, Zhang G A. Atmospheric corrosion behavior of tin under an alternating current electric field [J]. J. Electr. Mater., 2017, 46: 4359
doi: 10.1007/s11664-017-5395-y
[15] Luo X, Li X Q, Dong C L. Effect of corrosion products on corrosion process of 6061 aluminium alloy in marine atmosphere [J]. Corros. Prot., 2018, 39: 587
[15] (罗雪, 李小强, 董重里. 腐蚀产物对6061铝合金海洋大气腐蚀过程的影响 [J]. 腐蚀与防护, 2018, 39: 587)
[16] Zhang X, Dai N W, Yang Y, et al. Effect of direct current electric field on corrosion mechanism of Zn exposed to simulated industrial environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 451
[16] (张鑫, 戴念维, 杨燕等. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 451)
doi: 10.11902/1005.4537.2017.159
[17] Dai N W, Zhang J X, Chen Q M, et al. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment [J]. Corros. Sci., 2015, 99: 295
doi: 10.1016/j.corsci.2015.07.029
[18] Huang H L, Guo X P, Zhang G A, et al. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer [J]. Corros. Sci., 2011, 53: 3446
doi: 10.1016/j.corsci.2011.04.017
[19] Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J]. Corros. Sci., 2004, 46: 1649
doi: 10.1016/j.corsci.2003.10.005
[20] Liu W J, Cao F H, Chen A N, et al. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour [J]. Corros. Sci., 2010, 52: 627
doi: 10.1016/j.corsci.2009.10.031
[21] Arenas M A, De Damborenea J. Interference by cerium cations during the multi-step zinc dissolution process in a chloride-containing electrolyte [J]. Corros. Sci., 2006, 48: 3196
doi: 10.1016/j.corsci.2005.10.015
[22] Nguyen T H, Foley R T. The chemical nature of aluminum corrosion: II. The initial dissolution step [J]. J. Electrochem. Soc., 1982, 129: 27
doi: 10.1149/1.2123768
[23] Hu G Y, Chen S Y, Jiang H L, et al. Effect of RE Ce on microstructure and properties of 7A52 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 1372
[23] (胡桂云, 陈送义, 姜慧丽等. 稀土Ce对7A52铝合金组织与性能的影响 [J]. 中国有色金属学报, 2016, 26: 1372)
[24] Li J F, Zhang Z, Cao F H, et al. Exfoliation corrosion and electrochemical impedance behavior of LC4 alloy [J]. Chin. J. Nonferrous Met., 2002, 12: 1189
[24] (李劲风, 张昭, 曹发和等. LC4铝合金剥蚀及其电化学阻抗行为 [J]. 中国有色金属学报, 2002, 12: 1189)
[25] Cao C N. Principle of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 158
[25] (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 158)
[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[4] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[10] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[12] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[13] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[14] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[15] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.