Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 446-452    DOI: 10.11902/1005.4537.2019.142
  研究报告 本期目录 | 过刊浏览 |
激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究
付安庆1,赵密锋2,李成政3,白艳4,朱文军5,马磊2,熊茂县2,谢俊峰2,雷晓维6,吕乃欣1,7()
1. 中国石油集团石油管工程技术研究院 石油管材及装备材料服役行为与结构安全国家重点实验室;西安 710077
2. 中国石油塔里木油田公司油气工程研究院 库尔勒 841000
3. 中国石油长庆油田公司开发事业部 西安 710018
4. 中国石油长庆油田公司第一采气厂 榆林 718500
5. 渤海装备 (天津) 新世纪机械制造有限公司 天津 300280
6. 西北工业大学理学院 西安 710072
7. 长安大学材料科学与工程学院 西安 710064
Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel
FU Anqing1,ZHAO Mifeng2,LI Chengzheng3,BAI Yan4,ZHU Wenjun5,MA Lei2,XIONG Maoxian2,XIE Junfeng2,LEI Xiaowei6,LV Naixin1,7()
1. State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials of CNPC Tubular Goods Research Institute, Xi'an 710077, China
2. Oil and Gas Engineering Research Institute, PetroChina Tarim Oilfield Company, Korla 841000, China
3. Oilfield Development Division, PetroChina Changqing Oilfield Company, Xi'an 710018, China
4. No. 1 Gas Plant, PetroChina Changqing Oilfield Company, Yulin 718500, China
5. Bohai Equipment New Century Machinery Manufacturing Co. , Ltd. , Tianjin 300280, China
6. School of Science, Northwestern Polytechnical University, Xi'an 710072, China
7. School of Material Science and Engineering, Chang'an University, Xi'an 710064, China
全文: PDF(5990 KB)   HTML
摘要: 

研究了激光表面改性对超级13Cr不锈钢油管组织和耐蚀性能的影响。结果表明,采用200 W激光功率、5 mm/s扫描速率可在超级13Cr不锈钢表面获得厚度为200 μm的熔凝层,熔凝层与不锈钢基体之间存在厚600 μm的过渡层。激光熔凝层与过渡层均为马氏体组织,不锈钢基体为马氏体+奥氏体组织。熔凝层的硬度为410 HV,比基体硬度提高约25%;过渡层硬度为360~400 HV。与熔凝层和基体相比,过渡层的钝化区最宽、维钝电流密度最小且具有更高的点蚀电位和Kelvin电位。熔凝层的焊道界面处对局部腐蚀较为敏感。激光表面熔凝方法能显著提高超级13Cr不锈钢的表面硬度,超级13Cr耐腐蚀性能顺序为过渡层>基体>熔凝层,激光表面改性可在超级13Cr油管表面获得具有高耐蚀性的过渡层。

关键词 超级13Cr不锈钢激光熔凝组织硬度腐蚀    
Abstract

Surface re-melted layer was obtained on super 13Cr stainless steel via laser surface melting (LSM) treatment, then, of which the microstructure, micro-hardness and corrosion performance were characterized by means of optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness tester, immersion test and scanning micro-zone electrochemical workstation. It is found that with a laser beam of 200 W and 5 mm/s of laser scanning speed, the LSM treatment could produce a remelting surface composed of 200 μm thick LSM layer and a 600 μm thick transition layer on the steel surface. The above two layers all show martensite microstructure, while the steel matrix is comprised of martensite and austenite. The micro-hardness of the LSM layer is 410 HV, which is 25% higher than the hardness of steel matrix, while that of the transition layer is 360~400 HV. Moreover, comparing with the LSM layer and steel matrix, the transition layer shows the widest passive range, lowest passive current density, and highest pitting potential and Kelvin potential. In addition, the inter-pass interface of the LSM layer is sensitive to localized corrosion. It is concluded that LSM treatment can significantly enhance the surface hardness of super 13Cr stainless steel, and the corrosion resistance of super 13Cr lies in the order of transition layer>steel matrix>LSM layer, indicating that a highly corrosion-resistant transition layer can be obtained on the steel surface via laser surface modification.

Key wordssuper 13Cr    stainless steel    surface laser melting    microstructure    hardness    corrosion
收稿日期: 2019-09-05     
ZTFLH:  TG178  
基金资助:国家科技重大专项(2016ZX05051);中石油重大科技专项(2018E-1809);陕西省创新人才推进计划-青年科技新星项目(2017KJXX-03)
通讯作者: 吕乃欣     E-mail: lvnx@cnpc.com.cn
Corresponding author: Naixin LV     E-mail: lvnx@cnpc.com.cn
作者简介: 付安庆,男,1981年生,博士,高级工程师

引用本文:

付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
Anqing FU, Mifeng ZHAO, Chengzheng LI, Yan BAI, Wenjun ZHU, Lei MA, Maoxian XIONG, Junfeng XIE, Xiaowei LEI, Naixin LV. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 446-452.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.142      或      https://www.jcscp.org/CN/Y2019/V39/I5/446

图1  超级13Cr不锈钢激光表面熔凝样品沿厚度方向的横截面组织形貌
图2  激光表面熔凝层的表面和界面形貌
图3  横截面的显微硬度分析部位及硬度曲线
图4  熔凝层横截面不同部位的显微硬度,上表面测试点及上表面硬度曲线
图5  超级13Cr不锈钢在3.5%NaCl溶液中的动电位极化曲线
图6  超级13Cr不锈钢在3.5%NaCl溶液中的EIS曲线
图7  超级13Cr不锈钢在6%FeCl3溶液中浸泡24 h后的SEM截面形貌
图8  超级13Cr不锈钢经LSM处理后各区域的SKP微区电化学分析结果
图9  超级13Cr不锈钢经LSM处理后各区域的XRD谱分析结果
1 AnselmoN, MayJ E, MarianoN A, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater [J]. Mater. Sci. Eng., 2006, A428: 73
2 MoreiraR M, FrancoC V, JoiaC J B M, et al. The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid [J]. Corros. Sci., 2004, 46: 2987
3 LiuY R, YeD, YongQ L, et al. Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel [J]. J. Iron Steel Res. Int., 2011, 18(11): 60
4 LeiX W, FengY R, ZhangJ X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
5 PengC H, LiuZ Y, WeiX Z. Failure analysis of a steel tube joint perforated by corrosion in a well-drilling pipe [J]. Eng. Fail. Anal., 2012, 25: 13
6 TianC, ZouD N, TangC B, et al. Erosion-corrosion behavior of supermartensitic stainless steel in acidic lixivium solution [J]. Hot Work. Technol., 2014, 43(8): 18
6 田成, 邹德宁, 唐长斌等. 超级马氏体不锈钢在酸性浸滤液中的冲刷腐蚀行为 [J]. 热加工工艺, 2014, 43(8): 18
7 XiY T, LiuD X, HanD, et al. Improvement of erosion and erosion-corrosion resistance of 2Cr13 stainless steel by low temperature plasma nitriding [J]. J. Mater. Eng., 2007, (11): 76
7 奚运涛, 刘道新, 韩栋等. 低温离子渗氮提高2Cr13不锈钢的冲蚀磨损与冲刷腐蚀抗力 [J]. 材料工程, 2007, (11): 76
8 EspitiaL A, DongH S, LiX Y, et al. Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel [J]. Wear, 2015, 332/333: 1070
9 ParionaM M, TeleginskiV, Dos SantosK, et al. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys [J]. Mater. Charact., 2012, 74: 64
10 BoinovichL B, ModinE B, SayfutdinovaA R, et al. Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties [J]. ACS Nano, 2017, 11: 10113
11 SharmaP, MajumdarJ D. Microstructural characterization and wear behavior of nano-boride dispersed coating on AISI 304 stainless steel by hybrid high velocity oxy-fuel spraying laser surface melting [J]. Metall. Mater. Trans., 2015, 46A: 3157
12 ChanW K, KwokC T, LoK H. Effect of laser surface melting and subsequent re-aging on microstructure and corrosion behavior of aged S32950 duplex stainless steel [J]. Mater. Chem. Phys., 2018, 207: 451
13 KumarA, RoyS K, PityanaS, et al. Corrosion behaviour and bioactivity of a laser surface melted AISI 316L stainless steel [J]. Laser. Eng., 2015, 30: 31
14 GuoC G, XuY M, WangL Q, et al. Effect of laser surface strengthening on corrosion behavior of magnesium alloy in simulated body fluid [J]. Surf. Technol., 2017, 46(8): 188
14 郭长刚, 许益蒙, 王凌倩等. 激光表面强化对镁合金在模拟体液中腐蚀行为的影响 [J]. 表面技术, 2017, 46(8): 188
15 XuC W, WangZ Q, HuX, et al. Research on microstructure and property of laser cladding layer on 1Cr17Ni2 stainless steel [J]. Surf. Technol., 2011, 40(1): 11
15 徐成伟, 王振全, 胡欣等. 1Cr17Ni2不锈钢表面激光熔覆层的微观组织和性能研究 [J]. 表面技术, 2011, 40(1): 11
16 SunM, XiaoK, DongC F, et al. Electrochemical and initial corrosion behavior of ultrahigh strength steel by scanning kelvin probe [J]. J. Mater. Eng. Perform., 2013, 22: 815
17 ShengH, DongC F, XiaoK, et al. Anodic dissolution of a crack tip at AA2024-T351 in 3.5wt%NaCl solution [J]. Int. J. Miner. Metall. Mater., 2012, 19: 939
18 FuA Q, ChengY F. Characterization of corrosion of X65 pipeline steel under disbonded coating by scanning Kelvin probe [J]. Corros. Sci., 2009, 51: 914
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.