Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 351-357    DOI: 10.11902/1005.4537.2019.113
  研究报告 本期目录 | 过刊浏览 |
固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究
郏义征1, 王保杰2, 赵明君2, 许道奎3()
1.四川建筑职业技术学院 博士后创新实践基地 德阳 618000
2.沈阳理工大学环境与化学工程学院 沈阳 110159
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid
JIA Yizheng1, WANG Baojie2, ZHAO Mingjun2, XU Daokui3()
1. Innovation and Practice Base for Postdoctors, Sichuan College of Architectural Technology, Deyang 618000, China
2. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(4253 KB)   HTML
摘要: 

结合电化学测试、析氢实验和腐蚀形貌观察,对比研究了固溶处理前后挤压态Mg-6Zn-1.2Y-0.8Nd 镁合金样品在Hank's溶液中的腐蚀行为。结果表明,经475 ℃固溶4 h (T4) 后,经不同预浸泡时间处理后合金样品的抗腐蚀能力均得到了提升。当预浸泡时间少于24 h时,热处理前后合金样品的抗腐蚀能力均随着浸泡时间的延长而提升。然而,当预浸泡时间为48 h时,两种处理态样品的抗腐蚀能力均有所降低。析氢实验结果表明,T4态合金样品的析氢速度是挤压态样品的0.75倍。对比固溶处理前后合金样品的腐蚀形貌,可见挤压态合金样品表面的腐蚀情况较为严重,且腐蚀坑明显较多较深。

关键词 镁合金预浸泡析氢点蚀坑固溶处理    
Abstract

The corrosion behavior of an as-extruded Mg-6Zn-1.2Y-0.8Nd alloy before and after solid solution (T4) treatment was assessed comparatively in Hank's solution by means of hydrogen evolution examination, electrochemical tests and corrosion morphologies characterization. The results showed that after being solution treated at 475 ℃ for 4 h, the corrosion resistance of the alloy was improved. In addition, when the pre-soaking time was less than 24 h, the corrosion resistance of the alloy before and after T4 treatment all increased with the pre-soaking time. However, when the pre-soaking time was 48 h, the corrosion resistance of the differently treated alloys was reduced. The hydrogen evolution data showed that the hydrogen evolution rate of the T4 alloy was 0.75 times as high as that of the as-extruded ones. As the corrosion morphology of different treated alloys was compared, it can be seen that the corrosion attack on the surface of as-extruded alloy was much severe with deeper corrosion pits.

Key wordsmagnesium alloy    pre-soaking    hydrogen evolution    pitting    solid solution treatment
收稿日期: 2019-07-26     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51701129);国家自然科学基金(51871211);德阳市重点科技支撑项目(2014ZZ051);沈阳理工大学博士后启动基金(10500010006)
通讯作者: 许道奎     E-mail: dkxu@imr.ac.cn
Corresponding author: XU Daokui     E-mail: dkxu@imr.ac.cn
作者简介: 郏义征,男,1980年生,博士

引用本文:

郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
Yizheng JIA, Baojie WANG, Mingjun ZHAO, Daokui XU. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 351-357.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.113      或      https://www.jcscp.org/CN/Y2020/V40/I4/351

图1  固溶处理前后挤压态Mg-6Zn-1.2Y-0.8Nd合金的微观形貌
图2  固溶处理前后Mg-6Zn-1.2Y-0.8Nd合金样品在Hank's溶液中的析氢曲线
图3  不同时间预浸泡后Mg-6Zn-1.2Y-0.8Nd合金样品在Hank's溶液中的动电位极化曲线
ConditionPre-immersion time / hEcorrVSCEIcorr10-3 mA·cm-2
Before T40-1.574±0.157.9±0.5
After T40-1.572±0.154.8±0.2
Before T42-1.581±0.205.0±0.3
After T42-1.624±0.153.6±0.2
Before T44-1.525±0.104.1±0.3
After T44-1.625±0.153.1±0.3
Before T48-1.612±0.103.4±0.3
After T48-1.606±0.152.0±0.1
Before T424-1.620±0.252.2±0.2
After T424-1.568±0.151.2±0.1
Before T448-1.633±0.102.9±0.1
After T448-1.584±0.151.9±0.1
表1  固溶处理前后挤压态Mg-6Zn-1.2Y-0.8Nd合金样品极化曲线的拟合结果
图4  在Hank's溶液中经不同时间预浸泡处理后挤压态Mg-6Zn-1.2Y-0.8Nd合金样品的表面腐蚀形貌及三维高低差照片
图5  在Hank's溶液中经不同时间预浸泡处理后T4态Mg-6Zn-1.2Y-0.8Nd合金样品的表面腐蚀形貌及三维高低差照片
[1] Yan Y T, Tan L L, Xiong D S, et al. Research progress in magnesium-based metals for medical applications [J]. Mater. Rev., 2008, 22(1): 110
[1] (颜廷亭, 谭丽丽, 熊党生等. 医用镁金属材料的研究进展 [J]. 材料导报, 2008, 22(1): 110)
[2] Huang J J, Yang K. Research on magnesium alloys for bio-medical applications [J]. Mater. Rev., 2006, 20(4): 67
[2] (黄晶晶, 杨柯. 镁合金的生物医用研究 [J]. 材料导报, 2006, 20(4): 67)
[3] El-Taib H F, Shehata O S, Tantawy N S. Degradation behaviour of AZ80E magnesium alloy exposed to phosphate buffer saline medium [J]. Corros. Sci., 2014, 86: 285
doi: 10.1016/j.corsci.2014.06.008
[4] Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[5] Huang J J, Ren Y B, Zhang B C, et al. Study on biocompatility of magnesium and its alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1102
[5] (黄晶晶, 任伊宾, 张炳春等. 镁及镁合金的生物相容性研究 [J]. 稀有金属材料与工程, 2007, 36: 1102)
[6] Yang K, Tan L L, Ren Y B, et al. Study on biodegradation behavior of AZ31 magnesium alloy [J]. Mater. China, 2009, 28(2): 26
[6] (杨柯, 谭丽丽, 任伊宾等. AZ31镁合金的生物降解行为研究 [J]. 中国材料进展. 2009, 28(2): 26)
[7] Yuan G Y, Zhang X B, Niu J L, et al. Research progress of new type of degradable biomedical magnesium alloys JDBM [J]. Chin. J Nonferrous Met., 2011, 21: 2476
doi: 10.1016/S1003-6326(11)61039-X
[7] (袁广银, 章晓波, 牛佳林等. 新型可降解生物医用镁合金JDBM的研究进展 [J]. 中国有色金属学报, 2011, 21: 2476))
[8] He K, Liu K, Daviglus M L, et al. Magnesium intake and incidence of metabolic syndrome among young adults [J]. Circulation, 2006, 113: 1675
doi: 10.1161/CIRCULATIONAHA.105.588327 pmid: 16567569
[9] Bae Y J, Choi M K. Magnesium intake and its relevance with antioxidant capacity in Korean adults [J]. Biol. Trace Elem. Res., 2011, 143: 213
doi: 10.1007/s12011-010-8883-y
[10] Zreiqat H, Howlett C R, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants [J]. J. Biomed. Mater. Res., 2002, 62: 175
doi: 10.1002/jbm.10270 pmid: 12209937
[11] Vormann J. Magnesium: Nutrition and metabolism [J]. Mol. Aspects Med., 2003, 24: 27
doi: 10.1016/s0098-2997(02)00089-4 pmid: 12537987
[12] Zhang X B, Ma Q L, Ba Z X, et al. Microstructure and corrosion behaviour in simulated body fluid of solution treated Mg-Nd-Gd-Sr-Zn-Zr alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1156
[12] (章晓波, 马青龙, 巴志新等. 固溶处理态Mg-Nd-Gd-Sr-Zn-Zr镁合金的显微组织及其在模拟体液中的腐蚀行为 [J]. 稀有金属材料与工程, 2017, 46: 1156)
[13] Zhang X B, Mao L, Yuan G Y, et al. Performances of biodegradable Mg-Nd-Zn-Zr magnesium alloy for cardiovascular stent [J]. Rare Met. Mater. Eng., 2013, 42: 1300
[13] (章晓波, 毛琳, 袁广银等. 心血管支架用Mg-Nd-Zn-Zr生物可降解镁合金的性能研究 [J]. 稀有金属材料与工程, 2013, 42: 1300)
[14] Zhang X B, Yuan G Y, Wang Z Z. Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg-Nd-Zn-Zr alloy [J]. Mater. Sci. Technol., 2013, 29: 111
doi: 10.1179/1743284712Y.0000000107
[15] Kang Y Y, Du B N, Li Y M, et al. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 6
doi: 10.1016/j.jmst.2018.09.020
[16] Jing S T. Simulation for the degradation process of Mg-Zn-Y-Nd alloy coronary stent [D]. Zhengzhou: hengzhou University, 2017
[16] (井帅涛. Mg-Zn-Y-Nd合金冠脉支架降解过程的模拟 [D]. 郑州: 郑州大学, 2017)
[17] Lu X L, Yao X L, Li Y M. Microstructure and modification of Nd and Zn trace elements in a Mg-Zn-Y-Nd vascular alloy stent [J]. Chin. J. Tissue Eng. Res., 2017, 21: 1571
[17] (鲁雪丽, 姚新亮, 李彦明. Nd, Zn微量元素在Mg-Zn-Y-Nd血管合金支架中组织学特性和改性的变化 [J]. 中国组织工程研究, 2017, 21: 1571)
[18] Liu Q. Research on the microstructure and property of ultrafine-grained Mg-Zn-Y-Nd alloy for vascular stent application [D]. Zhengzhou: Zhengzhou University, 2014
[18] (刘茜. 血管支架用超细晶Mg-Zn-Y-Nd合金组织及性能的研究 [D]. 郑州: 郑州大学, 2014)
[19] Kang Y Y, Du B N, Li Y M, et al. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 6
doi: 10.1016/j.jmst.2018.09.020
[20] Wang B J, Xu D K, Sun J, et al. Effect of grain structure on the stress corrosion cracking (SCC) behavior of an as-extruded Mg-Zn-Zr alloy [J]. Corros. Sci., 2019, 157: 347
doi: 10.1016/j.corsci.2019.06.017
[21] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
doi: 10.1016/j.ijfatigue.2018.10.019
[22] Wang B J, Xu D K, Xin Y C, et al. High corrosion resistance and weak corrosion anisotropy of an as-rolled Mg-3Al-1Zn (in wt.%) alloy with strong crystallographic texture [J]. Sci. Rep., 2017, 7: 16014
doi: 10.1038/s41598-017-16351-z pmid: 29167520
[23] Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
[23] (郏义征, 赵明君, 程世婧等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463)
[24] Shi Z M, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corros. Sci., 2010, 52: 579
doi: 10.1016/j.corsci.2009.10.016
[25] Song G L, Atrens A. Understanding magnesium corrosion-A framework for improved alloy performance [J]. Adv. Eng. Mater., 2003, 5: 837
doi: 10.1002/(ISSN)1527-2648
[26] Wang B J, Xu D K, Dong J H, et al. Effect of corrosion production film on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt.%) alloy in Hank's solution [J]. J. Mater. Sci. Technol., 2018, 34: 1756
doi: 10.1016/j.jmst.2018.02.013
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[6] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[7] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[8] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[11] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
[14] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[15] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.