Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 151-158    DOI: 10.11902/1005.4537.2019.010
  研究报告 本期目录 | 过刊浏览 |
深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响
沈树阳1, 王东胜1, 孙士斌2, 杨剔2, 赵前进2, 王鑫2, 张亚飞2, 常雪婷1()
1 上海海事大学海洋科学与工程学院 上海 201306
2 上海海事大学物流工程学院 上海 201306
Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments
SHEN Shuyang1, WANG Dongsheng1, SUN Shibin2, YANG Ti2, ZHAO Qianjing2, WANG Xin2, ZHANG Yafei2, CHANG Xueting1()
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
全文: PDF(6287 KB)   HTML
摘要: 

采用模拟浸泡实验技术,结合腐蚀形貌分析以及动电位极化和电化学阻抗技术研究了深冷处理对EH40极寒环境船用钢板在3.5% (质量分数) NaCl溶液中的海水腐蚀行为。结果表明:未经深冷处理的极寒环境船用钢板表面发生均匀腐蚀,在样品表面有均匀致密的腐蚀层产生;而经过-80 ℃深冷处理的钢板试样表面发生点蚀现象,其腐蚀失重增加,腐蚀速率由1.15 mm/a升至1.33 mm/a,增幅约为15.6%,同时腐蚀电流密度由1.244 μA·cm-2升至3.643 μA·cm-2,电化学阻抗值减小,耐蚀性降低;两者的腐蚀产物以α-FeOOH、β-FeOOH和γ-FeOOH为主。较低的环境温度对于极寒环境船用钢板的耐腐蚀性能有一定的影响。

关键词 极寒船用钢腐蚀性能深冷处理浸泡实验电化学测试    
Abstract

The corrosion behavior in artificial seawater of a marine steel plate suitable for extremely cold environments, EH40 steel before and after subzero treatment was studied by means of immersion test, electrochemical polarization curve measurement, electrochemical impedance spectroscopy, X-ray diffractometer and scanning electron microscope. Results showed that uniform corrosion occurred on the steel before subzero treatment, leading to the formation of a dense corrosion product scale on the steel surface. Whereas, pitting corrosion emerged on the steel subjected to subzero treatment at -80 ℃. The mass loss and corrosion current density of the steel before subzero treatment were 1.15 mm/a and 1.244 μA·cm-2, respectively, which increased to 1.33 mm/a and 3.643 μA·cm-2 for the steel after subzero treatment, indicating that the subzero treatment could reduce the corrosion resistance of the steel. The corrosion products for the steels before and after subzero treatment were composed of α-FeOOH, β-FeOOH, and γ-FeOOH. Therefore, low ambient temperature has certain degree of negative impact on the corrosion resistance of marine steel plate in extremely cold environments.

Key wordslow temperature ship steel    corrosion behavior    cooling treatment    immersion test    electrochemistry test
收稿日期: 2019-01-12     
ZTFLH:  TB304  
基金资助:国家重点研发计划(2016YFB0300700);上海市教委曙光计划项目(19SG46);上海市自然科学基金(17ZR1440900);科技部国际合作交流项目(CU03-29)
通讯作者: 常雪婷     E-mail: xtchang@shmtu.edu.cn
Corresponding author: CHANG Xueting     E-mail: xtchang@shmtu.edu.cn
作者简介: 沈树阳,男,1996年生,本科生

引用本文:

沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
Shuyang SHEN, Dongsheng WANG, Shibin SUN, Ti YANG, Qianjing ZHAO, Xin WANG, Yafei ZHANG, Xueting CHANG. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 151-158.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.010      或      https://www.jcscp.org/CN/Y2020/V40/I2/151

图1  EH40钢样显微组织
图2  EH40船用钢板晶粒尺寸分布图
图3  未经和经深冷处理EH40钢试样去除腐蚀产物前后的微观形貌
图4  未经和经深冷处理EH40钢在海水中浸泡72 h后腐蚀产物形貌及组成
图5  原始的、未经和经过-80 ℃深冷处理再经浸泡后的EH40钢表面XRD谱
图6  经深冷处理后EH40钢的腐蚀形貌
图7  未经和经过深冷处理的EH40钢浸泡72 h的极化曲线
Temperature / ℃Ecorr / VBa / mV·dec-1Bc / mV·dec-1Icorr / μA·cm-2Rp / Ω·cm2CORrate
25-0.65210.0233.7881.24425311.3×10-4
-80-0.6459.8352.2823.6439853.8×10-4
表1  极化曲线拟合结果
图8  未经和经过深冷处理的EH40钢样浸泡72 h后的电化学阻抗谱
Temperature / °CRs / Ω·cm2QRf / Ω·cm2
Y0 / 10-4 Ω-1·cm2·snn
250.95271.3770.56283.017
-800.75941.2720.49821.857
表2  等效电路拟合结果
图 9  未经和经过-80 ℃处理的EH40钢试样微区电化学结果
图10  未经和经过-80 ℃深冷处理的EH40钢的腐蚀机理
[1] Devasthale A, Sedlar J, Koenigk T, et al. The thermodynamic state of the Arctic atmosphere observed by AIRS: Comparisons during the record minimum sea ice extents of 2007 and 2012 [J]. Atmos. Chem. Phys., 2013, 13: 7441
[2] Gautier D L, Bird K J, Charpentier R R, et al. Assessment of undiscovered oil and gas in the Arctic [J]. Science, 2009, 324: 1175
[3] Bertelsen R G, Gallucci V. The return of China, post-Cold War Russia, and the Arctic: Changes on land and at sea [J]. Mar. Policy, 2016, 72: 240
[4] Guo N R, Hu M X. A review: Interests brought by the Arctic passage [J]. Ocean Dev. Manag., 2018, 35(10): 51
[4] (郭楠蓉, 胡麦秀. 北极航道利益研究综述 [J]. 海洋开发与管理, 2018, 35(10): 51)
[5] Ke C Q, Wang M M. Seasonal and interannual variation of thinkness and volume of the Arctic sea ice based on Cryosat-2 during 2010-2017 [J]. Acta Oceanol. Sin., 2018, 40(11): 1
[5] (柯长青, 王蔓蔓. 基于CryoSat-2数据的2010-2017年北极海冰厚度和体积的季节与年际变化特征 [J]. 海洋学报, 2018, 40(11): 1)
[6] Kim K J, Lee J H, Park D K, et al. An experimental and numerical study on nonlinear impact responses of steel-plated structures in an Arctic environment [J]. Int. J. Impact Eng., 2016, 93: 99
[7] Li Z H, Shi J P, Tang A M. Experimental research on the brittle fracture mechanism in metal material [J]. Chin. J. Appl. Mech., 2012, 29: 48
[7] (李智慧, 师俊平, 汤安民. 金属材料脆性断裂机理的实验研究 [J]. 应用力学学报, 2012, 29: 48)
[8] Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
[8] (郭铁明, 张延文, 秦俊山等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319)
[9] Mao H Y, Cai Q W, Wu H B, et al. Effect of alloy element and carbon content on corrosion behavior of E36 ship plate steel [J]. Corros. Prot., 2013, 34: 499
[9] (毛红艳, 蔡庆伍, 武会宾等. 合金元素和碳含量对E36船板钢腐蚀行为的影响 [J]. 腐蚀与防护, 2013, 34: 499)
[10] Chen C, Wu J J, Zhang D. Effects of sulfate-reducing bacteria on marine corrosion of weld joints of EH40 [J]. Equip. Environ. Eng., 2018, 15(10): 51
[10] (陈超, 吴佳佳, 张盾. 硫酸盐还原菌对EH40焊接钢海水腐蚀的影响 [J]. 装备环境工程, 2018, 15(10): 51)
[11] Guo Y B, Li C, Liu Y C, et al. Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution [J]. Int. J. Miner. Metall. Mater., 2015, 22: 604
[12] Hao X H, Dong J H, Wei J, et al. Influence of microstructure of AH32 corrosion resistant steel on corrosion behavior [J]. Acta Metall. Sin., 2012, 48: 534
[12] (郝雪卉, 董俊华, 魏洁等. AH32耐蚀钢显微组织对其腐蚀行为的影响 [J]. 金属学报, 2012, 48: 534)
[13] Zha X Q. Corrosion behavior of 10NiCrMo steel in laboratory simulated ocean circumstance experiments [J]. Iron Steel, 2010, 45(10): 75
[13] (查小琴. 10NiCrMo钢在室内模拟海洋环境试验中的腐蚀行为 [J]. 钢铁, 2010, 45(10): 75)
[14] Maiti D, Devi P S. Selective formation of iron oxide and oxyhydroxide nanoparticles at room temperature: Critical role of concentration of ferric nitrate [J]. Mater. Chem. Phys., 2015, 154: 144
[15] Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 274
[15] (孙永伟, 钟玉平, 王灵水等. 低合金高强度钢的耐模拟工业大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 274)
[16] Yang Y L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
[17] Zhao J M, Zuo Y, Xiong J P. Corrosion behavior of mild steel in simulated solutions within pits and crevices [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 193
[17] (赵景茂, 左禹, 熊金平. 碳钢在点蚀/缝隙腐蚀闭塞区模拟溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2002, 22: 193)
[18] Qian A, Yang X H, Jin P, et al. Micro-zone electrochemical behavior of AerMet100 steel in salt spray environment under Cl- [J]. Equip. Environ. Eng., 2019, 16(10): 88
[18] (钱昂, 杨晓华, 金平等. Cl-作用下AerMet100钢在盐雾环境中的微区电化学行为 [J]. 装备环境工程, 2019, 16(10): 88)
[19] Nazarov A, Le Bozec N, Thierry D. Assessment of steel corrosion and deadhesion of epoxy barrier paint by scanning Kelvin probe [J]. Prog. Org. Coat., 2018, 114: 123
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[5] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[6] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[7] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[8] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[10] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[11] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[12] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[13] 耿振伟,肖代红. Zn对挤压态Mg-13Gd-2Cu合金的显微组织及腐蚀性能影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 595-603.
[14] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[15] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.