Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 99-105    DOI: 10.11902/1005.4537.2020.281
  研究报告 本期目录 | 过刊浏览 |
表面划痕对304不锈钢液滴腐蚀行为的影响
程琪栋, 王燕华()
中国海洋大学化学化工学院 海洋化学理论与技术教育部重点实验室 青岛 266100
Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)
CHENG Qidong, WANG Yanhua()
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(4168 KB)   HTML
摘要: 

采用电化学方法结合表面分析技术,研究了液滴下粗糙度和划痕深度对304不锈钢腐蚀行为的影响。研究表明,粗糙度和划痕深度的增加可以显著增加点蚀发生的概率,并缩短点蚀的诱发时间。点蚀孔呈浅盘状,点蚀孔的尺寸随粗糙度和划痕深度的增加而增大。根据二项分布检验,在低粗糙度或无划痕的情况下,点蚀孔倾向于随机分布,而在高粗糙度、划痕较深的情况下,点蚀孔倾向于出现在液滴边缘附近的划痕处。对点蚀区域的元素分布测试可见,点蚀的发生与液滴挥发、Cl-浓度升高、导致Fe和Ni的氧化物等钝化膜的重要组成部分破坏有关。

关键词 不锈钢点蚀液滴粗糙度划痕    
Abstract

The effect of surface roughness and scratch depth on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl+0.25 mol/L MgCl2) were studied by means of electrochemical method and the surface analysis techniques. It was found that the increase of roughness and scratch depth can significantly enhance the probability and shorten the induction time of pitting corrosion. The corrosion pits are shallow disk-shaped and the size of pits increases with the roughness and scratch depth. According to the distribution checking, the corrosion pits tend to distribute randomly on the surface of low roughness or no scratches, while they tend to appear at the scratches near the edge of the droplet on the surface of high roughness with deep scratches. According to the element distribution in the pitting region, it was found that the pitting corrosion was related to the evaporation of liquid droplets and the increase of Cl- concentration, which led to the destruction of important components of the passivation film such as oxides of Fe and Ni.

Key wordsstainless steel    pitting corrosion    droplet    roughness    scratch
收稿日期: 2020-12-30     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51131005)
通讯作者: 王燕华     E-mail: wyhazz@163.com
Corresponding author: WANG Yanhua     E-mail: wyhazz@163.com
作者简介: 程琪栋,男,1995年生,硕士生

引用本文:

程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
Qidong CHENG, Yanhua WANG. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2). Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 99-105.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.281      或      https://www.jcscp.org/CN/Y2022/V42/I1/99

图1  不同粗糙度不锈钢表面产生的点蚀概率,所对应的接触角与平均覆盖面积以及不锈钢表面不同划痕深度产生点蚀的概率
图2  304不锈钢的开路电位及不同粗糙和表面不同深度划痕不锈钢的点蚀诱发时间
图3  不同粗糙度的不锈钢表面的Mott-Schottky曲线
Ra / μmMaximum depth / μmEquivalent diameter / μm
2.6711.91129.48
3.169.23197.75
3.3611.23200.91
5.1110.44223.58
7.4910.71229.87
表1  具有不同粗糙度的不锈钢表面蚀孔的最大深度与等效直径
Scratch depth / μmMaximum depth / μmEquivalent diameter / μm
0.004.5856.40
5.0610.7167.34
6.4022.6679.39
11.4829.8879.50
20.3932.26106.24
表2  施加不同深度划痕的不锈钢表面蚀孔的最大深度和等效直径
Condition location / μmEdgeCenter
2.672319
3.16384
3.36369
5.113711
7.493614
表3  不同粗糙度304不锈钢表面的点蚀分布
Condition location / μmScratch locationOther location
0.002018
5.06377
6.40463
11.48464
20.39464
表4  304不锈钢表面不同深度划痕的点蚀分布
图4  不同粗糙度不锈钢表面点蚀位置及不同深度划痕点蚀分布二项分布检验所得的Z值
图5  点蚀区域SEM形貌及点蚀区域EDS测试结果
图6  不同划痕深度304不锈钢点蚀诱发过程机理
1 Li Q X, Wang Z Y, Han W, et al. Review on atmospheric corrosion of stainless steels [J]. Corros. Sci. Prot. Technol., 2009, 21: 549
1 李巧霞, 王振尧, 韩薇等. 不锈钢的大气腐蚀 [J]. 腐蚀科学与防护技术, 2009, 21: 549
2 Ke R R, Alkire R. ChemInform abstract: Initiation of corrosion pits at inclusions on 304 stainless steel [J]. ChemInform, 1996, 27(16): 1
3 Williams D E, Zhu Y Y. Explanation for initiation of fitting corrosion of stainless steels at sulfide inclusions [J]. J. Electrochem. Soc., 2000, 147: 1763
4 Mikhailov A A, Strekalov P V, Panchenko Y M. Atmospheric corrosion of metals in regions of cold and extremely cold climate (a review) [J]. Prot. Met., 2008, 44: 644
5 Mi N, Ghahari M, Rayment T, et al. Use of inkjet printing to deposit magnesium chloride salt patterns for investigation of atmospheric corrosion of 304 stainless steel [J]. Corros. Sci., 2011, 53: 3114
6 Maier B, Frankel G S. Pitting corrosion of bare stainless steel 304 under chloride solution droplets [J]. J. Electrochem. Soc., 2010, 157: C302
7 Tada E, Frankel G S. Effects of particulate silica coatings on localized corrosion behavior of AISI 304SS under atmospheric corrosion conditions [J]. J. Electrochem. Soc., 2007, 154: C318
8 Tsutsumi Y, Nishikata A, Tsuru T. Initial stage of pitting corrosion of type 304 stainless steel under thin electrolyte layers containing chloride ions [J]. J. Electrochem. Soc., 2005, 152: B358
9 Guo L Y, Street S R, Mohammed-Ali H B, et al. The effect of relative humidity change on atmospheric pitting corrosion of stainless steel 304L [J]. Corros. Sci., 2019, 150: 110
10 Street S R, Cook A J M C, Mohammed-Ali H B, et al. The effect of deposition conditions on atmospheric pitting corrosion location under evans droplets on type 304L stainless steel [J]. Corrosion, 2018, 74: 520
11 Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
12 Degerbeck J, Karlsson A, Berglund G. Atmospheric corrosion of stainless steel of type 18Cr-2Mo-Ti [J]. Br. Corros. J., 1979, 14: 220
13 Guo L Y, Mi N, Mohammed-Ali H, et al. Effect of mixed salts on atmospheric corrosion of 304 stainless steel [J]. J. Electrochem. Soc., 2019, 166: C3010
14 Cheng X Q, Li X G, Du C W. Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method [J]. Chin. Sci. Bull., 2009, 54: 2239
15 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
16 Taveira L V, Montemor M F, Da Cunha Belo M, et al. Influence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic films formed on AISI 304L [J]. Corros. Sci., 2010, 52: 2813
17 Fattah-Alhosseini A, Vafaeian S. Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements [J]. J. Alloy. Compd., 2015, 639: 301
18 de Oliveira R K, Correa O V, de Oliveira M C L, et al. Surface chemistry and semiconducting properties of passive film and corrosion resistance of annealed surgical stainless steel [J]. J. Mater. Eng. Perform., 2020, 29: 6085
19 Ge H H, Zhou G D, Wu W Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film [J]. Appl. Surf. Sci., 2003, 211: 321
20 Ning L J, Liu X P. De Mauvo-Laplace's theorem and its application [J]. J. Further Edu. Shaanxi Normal Univ., 2015, 20(3): 101
20 宁丽娟, 刘新平. 德莫佛——拉普拉斯定理及应用 [J]. 陕西师范大学继续教育学报, 2015, 20(3): 101
21 Fu H M, Liang C H. Confidence test methods for binomial distribution [J]. J. Mech. Strength, 2003, 25: 513
21 傅惠民, 梁朝虎. 二项分布置信检验方法 [J]. 机械强度, 2003, 25: 513
22 Fan Z L. Error investigation in the approximate calculation with de Moivre-Laplace theorem [J]. J. Taiyuan Inst. Mech., 1990, 11(1): 72
22 樊志良. 用棣莫弗—拉普拉斯定理作近似计算时的误差探讨 [J]. 太原机械学院学报, 1990, 11(1): 72
23 Olefjord I, Elfstrom B O. The composition of the surface during passivation of stainless steels [J]. Corrosion, 1982, 38: 46
24 Jung R H, Tsuchiya H, Fujimoto S. XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere [J]. Corros. Sci., 2012, 58: 62
25 Liang C H. Influence of nickel on crevice corrosion behavior of type 304 stainless steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 1999, 20: 147
25 梁成浩. 镍对304不锈钢在NaCl溶液中缝隙腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 1999, 20: 147
26 Vignal V, Krawiec H, Le Manchet S. Influence of surface preparation and microstructure on the passivity and corrosion behaviour of duplex stainless steels [J]. J. Solid State Electrochem., 2014, 18: 2947
27 Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron [J]. J. Electrochem. Soc., 1997, 144: 1244
[1] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[2] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[3] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[4] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[5] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[6] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[7] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[8] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[9] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[10] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[11] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[12] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[13] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[14] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[15] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.