Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 106-112    DOI: 10.11902/1005.4537.2020.259
  研究报告 本期目录 | 过刊浏览 |
应变速率对预充氢DP780钢氢脆敏感性的影响
王贞, 刘静(), 张施琦, 黄峰
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及 服役安全工程技术研究中心 武汉 430081
Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of DP780 Steel with Hydrogen Pre-charging
WANG Zhen, LIU Jing(), ZHANG Shiqi, HUANG Feng
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(2561 KB)   HTML
摘要: 

利用电化学预充氢和慢应变速率拉伸实验研究了不同应变速率 (10-4、10-5和10-6 s-1) 条件下DP780钢的氢脆敏感性。结果表明,随应变速率降低,材料的氢脆敏感性增强,但其变化幅度与初始预充氢状态有关。当预充氢电流密度较小时,充氢量少且钢中无初始氢致裂纹,随应变速率降低,更多氢原子可扩散至试样心部应力集中处,导致断口心部脆性区域宽度增加,氢脆敏感性增强。但当预充氢电流密度较大 (≥30 mA/cm2) 且充氢量大于8.5 mg/L时,钢中产生的初始氢致裂纹会影响氢原子向心部扩散与聚集,同时其本身可捕获H原子产生氢脆,使材料氢脆敏感性随应变速率增加幅度减小。

关键词 DP钢应变速率预充氢氢脆敏感性    
Abstract

The hydrogen embrittlement susceptibility of DP780 steel under different strain rates (10-4, 10-5 and 10-6 s-1) was studied by means of slow strain rate tensile test and electrocheminal hydrogen pre-charging. The results showed that the hydrogen embrittlement susceptibility increased with decreasing strain rate, while the decreasing increment of the hydrogen embritttlement susceptibility was related to the hydrogen pre-charging parameters. When the pre-charging current density was low, pre-charged hydrogen content was low and there was no hydrogen-induced cracks in the steel. More hydrogen atoms could diffuse to the center of sample with the decreasing strain rate, which led to the increasing width of brittle region in fracture surface center portion and hydrogen embrittlement susceptibility of the steel. However, when the pre-charging hydrogen current density was over 30 mA/cm2, pre-charged hydrogen content increased to 8.5 mg/L and the initial hydrogen-induced cracks generated in the steel could act as hydrogen traps, which could influence the inward diffusion and aggregation of hydrogen, therewith induce hydrogen embrittlement as a result of capturing hydrogen atom. Therefore, the hydrogen embrittlement sensitivity of the steel decreases with the increase of strain rate.

Key wordsDP steel    strain rate    hydrogen pre-charged    hydrogen embrittlement susceptibility
收稿日期: 2020-12-09     
ZTFLH:  TG111.91  
基金资助:国家自然科学基金(51871171)
通讯作者: 刘静     E-mail: liujing@wust.edu.cn
Corresponding author: LIU Jing     E-mail: liujing@wust.edu.cn
作者简介: 王贞,女,1987年生,博士生

引用本文:

王贞, 刘静, 张施琦, 黄峰. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
Zhen WANG, Jing LIU, Shiqi ZHANG, Feng HUANG. Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of DP780 Steel with Hydrogen Pre-charging. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 106-112.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.259      或      https://www.jcscp.org/CN/Y2022/V42/I1/106

图1  退火热处理工艺曲线
图2  DP780钢的显微组织
图3  不同预充氢条件下拉伸样横截面形貌
图4  不同应变速率下DP780钢的拉伸性能
图5  应变速率对预充氢DP780钢氢脆敏感指数的影响
图6  不同预充氢电流密度下试样的拉伸断口形貌 (应变速率10-4 s-1)
图7  预充氢拉伸试样在不同应变速率下断口心部脆性区域宽度
图8  DP 780钢未拉伸状态下的氢渗透曲线
1 Sun Y Z, Wang X, Wang Y L, et al. Research progress on DP steel for automobiles [J]. Mater. China, 2015, 34: 475
1 孙耀祖, 王旭, 王运玲等. 汽车用双相钢的研究进展 [J]. 中国材料进展, 2015, 34: 475
2 Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46B: 1085
3 Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
4 Liu J H, Wang L, Wang X S, et al. Effect of strain rate on hydrogen embrittlement sensitivity of H2 charged SA508-III steel [J]. Heat Treat. Met., 2018, 43(10): 227
4 刘家骅, 王磊, 王旭升等. 应变速率对充氢SA508-III钢氢脆敏感性的影响 [J]. 金属热处理, 2018, 43(10): 227
5 Depover T, Wallaert E, Verbeken K. Fractographic analysis of the role of hydrogen diffusion on the hydrogen embrittlement susceptibility of DP steel [J]. Mater. Sci. Eng., 2016, 649A: 201
6 Kumamoto T, Koyama M, Sato K, et al. Strain-rate sensitivity of hydrogen-assisted damage evolution and failure in dual-phase steel: from vacancy to micrometer-scale void growth [J]. Eng. Fract. Mech., 2019, 216: 106513
7 Rehrl J, Mraczek K, Pichler A, et al. Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests [J]. Mater. Sci. Eng., 2014, 590A: 360
8 Ke S Z, Liu J, Huang F, et al. Effect of pre-strain on hydrogen embrittlement susceptibility of DP600 steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 424
8 柯书忠, 刘静, 黄峰等. 预应变对DP600钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 424
9 Wang M Q, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test [J]. Corros. Sci., 2007, 49: 4081
10 Kundu A, Field D P. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel [J]. Mater. Sci. Eng., 2016, 667A: 435
11 Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metall. Sin., 2013, 49: 159
11 董丹阳, 刘杨, 王磊等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49: 159
12 Depover T, Hertelé S, Verbeken K. The effect of hydrostatic stress on the hydrogen induced mechanical degradation of dual phase steel: a combined experimental and numerical approach [J]. Eng. Fract. Mech., 2019, 221: 106704
13 Kan B, Yang Z X, Wang Z, et al. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel [J]. Mater. Sci. Technol., 2017, 33: 1539
14 Kan B, Wu W J, Yang Z X, et al. Stress-induced hydrogen redistribution and corresponding fracture behavior of Q960E steel at different hydrogen content [J]. Mater. Sci. Eng., 2020, 775A: 138963
15 Li X F, Zhang J, Shen S C, et al. Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel [J]. Mater. Sci. Eng., 2017, 682A: 359
16 Van den Eeckhout E, De Baere I, Depover T, et al. The effect of a constant tensile load on the hydrogen diffusivity in dual phase steel by electrochemical permeation experiments [J]. Mater. Sci. Eng., 2020, 773A: 138872
[1] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[2] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[3] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[4] 唐占梅,胡石林,张平柱. 316Ti在含氯离子300℃高温水中的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2012, 32(4): 291-295.
[5] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[6] 林召强,马力,闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[7] 常娥;闫永贵;李庆芬;马力. 阴极极化对921A钢海水中氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 83-88.
[8] 张耀丰; 丁毅; 陆晓峰; 顾伯勤 . 304不锈钢在H2S介质条件下的应力腐蚀[J]. 中国腐蚀与防护学报, 2007, 27(2): 101-108 .
[9] 何建平; 樊蔚勋; 袁庆铭 . 慢应变速率下铝合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2003, 23(1): 17-20 .
[10] 刘继华; 李荻; 张佩芬 . 氢对LC4高强铝合金应力腐蚀断裂的影响[J]. 中国腐蚀与防护学报, 2002, 22(5): 308-310 .