Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 60-66    DOI: 10.11902/1005.4537.2020.258
  研究报告 本期目录 | 过刊浏览 |
X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究
李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭()
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Electrochemical Noise Behavior of X70 Steel and Its Weld in Cl--containing High pH Solution
LI Hongjin, WANG Qishan, LIAO Zihan, SUN Xiangrui, SUN Hui, ZHANG Xinyang, CHEN Xu()
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
全文: PDF(3486 KB)   HTML
摘要: 

研究了不同外加电位下X70钢母材及其焊缝在含Cl-的高pH溶液中电化学噪声行为,并针对电化学噪声数据进行统计分析,得到表征点蚀萌生和发展的特征图谱。结果表明,电化学噪声技术可以有效监测X70钢的腐蚀过程,电流噪声幅值大小一定程度上反映了局部腐蚀萌生和发展过程。当X70钢处于阳极极化时,电化学噪声的能量密度谱 (EDP) 由低阶区向高阶区迁移,点蚀由亚稳态发展为稳态。当电位位于活化-钝化转变区时,EDP处于亚稳态点蚀区。外加电位为稳定钝化区时,母材的EDP处于点蚀诱导期,耐点蚀性能较好;而焊缝能量较高,EDP表明已经形成少量稳态点蚀。相同条件下,X70钢母材相对于焊缝的EN波动幅度较小,能量密度较小,表明焊缝的钝化膜自我修复能力较差,容易发生腐蚀。焊缝具有更高的能量密度,点蚀发展较快。

关键词 X70钢焊缝外加电位电化学噪声点蚀    
Abstract

The electrochemical corrosion behavior of X70 steel and its weld in a Cl--containing Na2CO3+NaHCO3 solution by various applied potentials was studied by means of electrochemical noise (EN) technique. Statistical analysis was conducted on the EN data to obtain the specific spectrum to characterize the initiation and development of the pitting. The results showed that the EN technique could effectively monitor the pitting process of X70 steel, while the amplitude of current noise reflected the initiation and development process of localized corrosion. When X70 steel was anodic polarized, the energy density spectrum (EDP) of EN moved from low-order zone to high-order zone, correspondingly, the pitting developed from metastable state to steady state. When the applied potential was in the activation-passivation zone, the EDP located in the metastable pitting zone. When the applied potential rose to stable passivation zone, the EDP of the substrate corresponds a pitting initiation period and the pitting resistance of the substrate was better. While the EDP for the weld with higher energy indicated that a small amount of steady-state pitting has been formed. By the same applied potential, the fluctuation range of EN and energy density of the substrate was small in comparison with the weld, indicating that the passivation film of the weld had a poor re-healing ability and was prone to be attacked. Due to that the weld had higher energy density, therefore, on which pitting developed faster than on the substrate.

Key wordsX70 steel    welding    applied potential    electrochemical noise    pitting
收稿日期: 2020-12-09     
ZTFLH:  TG174  
基金资助:辽宁省教育厅面上项目(L2017LZD004);教育部春晖计划合作科研项目
通讯作者: 陈旭     E-mail: cx0402@sina.com
Corresponding author: CHEN Xu     E-mail: cx0402@sina.com
作者简介: 李鸿瑾,女,1999年生

引用本文:

李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
Hongjin LI, Qishan WANG, Zihan LIAO, Xiangrui SUN, Hui SUN, Xinyang ZHANG, Xu CHEN. Electrochemical Noise Behavior of X70 Steel and Its Weld in Cl--containing High pH Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 60-66.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.258      或      https://www.jcscp.org/CN/Y2022/V42/I1/60

ZoneCSiMnSSiCrAlVMoCuPNiFe
Metal0.0450.240.480.010.0040.0310.010.0050.250.0150.0170.16Bal.
Joint0.0750.291.310.0040.0040.045------0.030.0350.0140.016Bal.
表1  X70钢及其焊缝化学成分
图1  X70钢母材及焊缝金相显微组织
图2  X70钢母材和焊缝在含Cl-的高pH溶液中的极化曲线
SampleEcorr vs SCE / VEc1 vs SCE / VEc2 vs SCE / VEb vs SCE / VIc1 / mA·cm-2Ic2 / mA·cm-2Ip / μA·cm-2
X70 steel-0.926-0.751-0.3710.8031.590.275.01
Weld joint-0.855-0.708-0.4580.6490.4850.02514.12
表2  X70钢在含Cl-的高pH值溶液中极化曲线拟合结果
图3  自腐蚀电位及外加电位为-0.75,-0.65和0.4 V时X70钢母材和焊缝在含Cl-的高pH溶液中电流噪声信号
图4  自腐蚀电位及外加电位为-0.75,-0.65和0.4 V时X70母材及焊缝能量密度谱
1 Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise I. theory of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 310
1 张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用-I. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21: 310
2 Men H, Zhang L H, Zhang J, et al. Electrochemical noise analysis of corrosion induced by sulfate-reducing bacteria [J]. Chem. Eng., 2013, 41(2): 18
2 门洪, 张丽华, 张静等. 硫酸盐还原菌诱导腐蚀的电化学噪声分析 [J]. 化学工程, 2013, 41(2): 18
3 Zhang T, Yang Y G, Shao Y W, et al. Advances of the analysis methodology for electrochemical noise [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 1
3 张涛, 杨延格, 邵亚薇等. 电化学噪声分析方法的研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 1
4 Darowicki K, Zieliński A. Joint time-frequency analysis of electrochemical noise [J]. J. Electroanal. Chem., 2001, 504: 201
5 Bertocci U, Frydman J, Gabrielli C, et al. Analysis of electrochemical noise by power spectral density applied to corrosion studies: Maximum entropy method or fast Fourier transform? [J]. J. Electrochem. Soc., 1998, 145: 2780
6 Liu X F, Wang H G, Quan G F, et al. Application of wavelet transform to detect the waveform of electrochemical noise [J]. Chin. J. Anal. Chem., 2001, 29: 161
6 刘晓方, 王汉功, 权高峰等. 利用小波变换检测电化学噪声信号波形 [J]. 分析化学, 2001, 29: 161
7 Shi W, Dong Z H, Guo X P. Analysis of electrochemical noise by Hilbert-Huang transform and its application [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 138
7 石维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用 [J]. 中国腐蚀与防护学报, 2014, 34: 138
8 Upadhyay N, Pujar M G, Singh S S, et al. Evaluation of the effect of molybdenum on the pitting corrosion behavior of austenitic stainless steels using electrochemical noise technique [J]. Corrosion, 2017, 73: 1320
9 Kietov V, Mandel M, Krüger L. Combination of electrochemical noise and acoustic emission for analysis of the pitting corrosion behavior of an austenitic stainless cast steel [J]. Adv. Eng. Mater., 2019, 21: 1800682
10 Tang Y W, Dai N W, Wu J, et al. Effect of surface roughness on pitting corrosion of 2205 duplex stainless steel investigated by electrochemical noise measurements [J]. Materials, 2019, 12: 738
11 Zhao Y, Zhou E Z, Xu D K, et al. Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise [J]. Corros. Sci., 2018, 143: 281
12 Ossia C V, Orji C U. Investigating pitting corrosion of stainless steel and aluminium using scanning vibrating electrode techniques and electrochemical noise measurement [J]. Int. J. Mech. Eng. Appl., 2016, 4: 71
13 Ma R Y, Wang C G, Mu X, et al. Influence of hydrostatic pressure on corrosion behavior of ultrapure Fe [J]. Acta Metall. Sin., 2019, 55: 859
13 马荣耀, 王长罡, 穆鑫等. 静水压力对超纯Fe腐蚀行为的影响 [J]. 金属学报, 2019, 55: 859
14 Liu S Q, Wang L D, Zong Q F, et al. Electrochemical noise analysis of local pitting corrosion behavior of pure aluminum [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 160
14 刘士强, 王立达, 宗秋凤等. 纯Al表面局部孔蚀的电化学噪声特征分析 [J]. 中国腐蚀与防护学报, 2014, 34: 160
15 Li J F, Xue L, Ma Y, et al. Electrochemical noise analysis for corrosion behavior of Mg-4Zn-1Ca Alloy in 0.9%NaCl solution [J]. Found. Technol., 2016, 37: 843
15 李捷帆, 薛龙, 马莹等. Mg-4Zn-1Ca合金在0.9%NaCl溶液中腐蚀行为的电化学噪声分析 [J]. 铸造技术, 2016, 37: 843
16 Sheng H, Dong C F, Yang Z W, et al. Electrochemical noise detection for SCC behavior for 2024-T351 aluminium alloy in acid NaCl solution [J]. Sci. Technol. Rev., 2012, 30(10): 18
16 生海, 董超芳, 杨志炜等. 2024-T351铝合金在酸性NaCl溶液中SCC行为的电化学噪声检测 [J]. 科技导报, 2012, 30(10): 18
17 Van Nieuwenhove V. Electrochemical noise measurements under pressurized water reactor conditions [J]. Corrosion, 2000, 56: 161
18 Du J, Tian H, Chen Y J, et al. Susceptibility to stress corrosion and crack initiation and propagation of 7A04 aluminum alloys [J]. J. Mater. Eng., 2018, 46(4): 74
18 杜娟, 田辉, 陈亚军等. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为 [J]. 材料工程, 2018, 46(4): 74
19 Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
20 Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50: 2251
21 Chen X, Wu M, He C, et al. Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution [J]. Acta Metall. Sin., 2010, 46: 951
21 陈旭, 吴明, 何川等. 外加电位对X80钢及其焊缝在库尔勒土壤模拟溶液中SCC行为的影响 [J]. 金属学报, 2010, 46: 951
22 Wang C X, Wu M, Chen X, et al. Electrochemical behavior of X80 steel and welding line in acid soil environment [J]. Corros. Prot., 2010, 31: 780
22 王成祥, 吴明, 陈旭等. X80钢及其焊缝组织在酸性土壤中的电化学行为 [J]. 腐蚀与防护, 2010, 31: 780
23 Yan M C, Weng Y J. EFfects of environmental solutions on electrochemical behaviors related to scc of pipe line steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 34
23 闫茂成, 翁永基. 环境溶液对管道钢应力腐蚀过程电化学行为的影响 [J]. 中国腐蚀与防护学报, 2005, 25: 34
24 Cheng Y F, Luo J L. Passivity and pitting of carbon steel in chromate solutions [J]. Electrochim. Acta, 1999, 44: 4795
25 Hoseinieh S M, Homborg A M, Shahrabi T, et al. A novel approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise [J]. Electrochim. Acta, 2016, 217: 226
26 Liao Z H, Song B, Ren Z, et al. Electrochemical corrosion behavior of matrix and weld seam of X70 steel in Na2CO3+NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 158
26 廖梓含, 宋博, 任泽等. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 158
[1] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[2] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[3] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[4] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[5] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[6] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[7] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[8] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[9] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[10] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[11] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[12] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[13] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[14] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[15] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.