Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 143-148    DOI: 10.11902/1005.4537.2020.257
  研究报告 本期目录 | 过刊浏览 |
温度对316L不锈钢在油田污水中点蚀行为的影响研究
张文丽1, 张振龙2, 吴兆亮2, 韩思柯1, 崔中雨1()
1.中国海洋大学材料科学与工程学院 青岛 266100
2.新疆宝莫环境工程有限公司 克拉玛依 834000
Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater
ZHANG Wenli1, ZHANG Zhenlong2, WU Zhaoliang2, HAN Sike1, CUI Zhongyu1()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.Xinjiang Baomo Environmental Engineering Co. Ltd. , Karamay 834000, China
全文: PDF(3028 KB)   HTML
摘要: 

通过动电位极化以及SEM分析对316L不锈钢在不同温度油田污水中的腐蚀行为进行了研究,同时利用点缺陷模型 (PDM) 解释了不锈钢的点蚀行为。结果表明,随着温度的升高,点蚀敏感性增加,点蚀电位降低。通过PDM分析了点蚀电位与电势扫描速率平方根在不同温度下的实验结果。PDM结合竞争性吸附理论和在钝化膜/溶液界面处阳离子空位生成机理成功地解释了本文的结果。

关键词 316L不锈钢油田污水点蚀点缺陷模型    
Abstract

The corrosion behavior of 316L stainless steel in an artificial oilfield wastewater at different temperatures was studied by potentiodynamic polarization measurement and SEM analysis. At the same time, the point defect model (PDM) was used to explain the pitting corrosion behavior of stainless steel. The results show that as the temperature of the oilfield wastewater increases, the pitting sensitivity increases and the pitting potential decreases for the 316L stainless steel. The experimental results of the pitting potential and the square root of the potential scanning rate at different temperatures were analyzed by PDM. The PDM combined with the competitive adsorption theory and the formation mechanism of cation vacancies at the passive film/solution interface can successfully explain the results of this paper.

Key words316L stainless steel    oilfield wastewater    pitting corrosion    point defect model
收稿日期: 2020-12-09     
ZTFLH:  TG172  
基金资助:山东省重点研发计划公益类专项(2019GHY112050)
通讯作者: 崔中雨     E-mail: cuizhongyu@ouc.edu.cn
Corresponding author: CUI Zhongyu     E-mail: cuizhongyu@ouc.edu.cn
作者简介: 张文丽,女,1995年生,硕士生

引用本文:

张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
Wenli ZHANG, Zhenlong ZHANG, Zhaoliang WU, Sike HAN, Zhongyu CUI. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 143-148.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.257      或      https://www.jcscp.org/CN/Y2022/V42/I1/143

图1  不同温度下316L不锈钢在油田污水中的动电位极化曲线
图2  在不同温度下316L不锈钢油田污水中重复20次的动电位极化曲线
图3  在不同温度下316L不锈钢油田污水中重复20次的Vc统计图
图4  316L不锈钢在不同温度的油田污水溶液中点蚀电位累计概率分布图
图5  316L不锈钢在不同温度的油田污水中临界点蚀电位 (平均值) 与Cl-浓度的关系
Temperature / ℃αξ
200.21535.0×1012
400.33283.6×1012
600.24203.2×1012
800.41208.3×1012
表1  316L 不锈钢在不同温度油田污水溶液中的极化率和阳离子空位密度
图6  在不同温度下316L不锈钢油田污水中平均点蚀电位与电位扫描速率的关系
图7  不同温度下316L不锈钢动电位极化后的点蚀形貌
1 Zhao G X, Huang J, Xue Y. Corrosion behavior of materials used for surface gathering and transportation pipeline in an oilfield [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 557
1 赵国仙, 黄静, 薛艳. 某油田地面集输管道用材腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 557
2 Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469
2 艾芳芳, 陈义庆, 钟彬等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469
3 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
4 Yi Y, Cho P, Al Zaabi A, et al. Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution [J]. Corros. Sci., 2013, 74: 92
5 Wang J H, Su C C, Szklarska-Smialowska Z. Effects of Cl- concentration and temperature on pitting of AISI 304 stainless steel [J]. Corrosion, 1988, 44: 732
6 Lei K S, Macdonald D D, Pound B G, et al. Breakdown of the passive film on polycrystal and single crystal (100) nickel by chloride [J]. J. Electrochem. Soc., 1988, 135: 1625
7 Macdonald D D, Urquidi‐Macdonald M. Theory of steady‐state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
8 Fonseca I T E, Lima N, Rodrigues J A, et al. Passivity breakdown of Al 2024-T3 alloy in chloride solutions: A test of the point defect model [J]. Electrochem. Commun., 2002, 4: 353
9 Liu Z J, Cheng X Q, Li X G, et al. Application of PDM (Point Defect Model) on 2205 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 90
9 刘佐嘉, 程学群, 李晓刚等. 点缺陷模型在2205双相不锈钢中的应用 [J]. 中国腐蚀与防护学报, 2013, 33: 90
10 Liu Z J, Cheng X Q, Liu X H, et al. Calculation and analysis of diffusivity of point defects in passive film formed on 2205 duplex stainless steel and 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 273
10 刘佐嘉, 程学群, 刘小辉等. 2205双相不锈钢与316L奥氏体不锈钢钝化膜内点缺陷扩散系数的计算分析 [J]. 中国腐蚀与防护学报, 2010, 30: 273
11 Aghuy A A, Zakeri M, Moayed M H, et al. Effect of grain size on pitting corrosion of 304L austenitic stainless steel [J]. Corros. Sci., 2015, 94: 368
12 Wang J M, Qian S S, Li Y H, et al. Passivity breakdown on 436 ferritic stainless steel in solutions containing chloride [J]. J. Mater. Sci. Technol., 2019, 35: 637
13 Al Saadi S, Yi Y S, Cho P, et al. Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution [J]. Corros. Sci., 2016, 111: 720
14 Dong C F, Luo H, Xiao K, et al. Effect of temperature and Cl- concentration on pitting of 2205 duplex stainless steel [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2011, 26: 641
15 Sharifi-Asl S, Mao F X, Lu P, et al. Exploration of the effect of chloride ion concentration and temperature on pitting corrosion of carbon steel in saturated Ca(OH)2 solution [J]. Corros. Sci., 2015, 98: 708
16 Breslin C B, Macdonald D D, Sikora J, et al. Influence of uv light on the passive behaviour of SS316-effect of prior illumination [J]. Electrochim. Acta, 1997, 42: 127
17 Dong C F, Mao F X, Gao S J, et al. Passivity breakdown on copper: influence of temperature [J]. J. Electrochem. Soc., 2016, 163: C707
18 Zhang Y C, Macdonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
19 Haruna T, Macdonald D D. Theoretical prediction of the scan rate dependencies of the pitting potential and the probability distribution in the induction time [J]. J. Electrochem. Soc., 1997, 144: 1574
20 Poursaee A. Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete [J]. Electrochim. Acta, 2010, 55: 1200
21 Yang S, Engelhardt G, Macdonald D D. Passivity breakdown and evolution of localized corrosion on type 316L stainless steel [A]. Proceedings of the 210th ECS Conference [C]. Cancun, Mexico, 2006: 3
[1] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[2] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[3] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[4] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[5] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[6] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[7] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[8] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[9] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[10] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[11] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[12] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[13] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[14] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[15] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.