Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 653-658    DOI: 10.11902/1005.4537.2020.252
  研究报告 本期目录 | 过刊浏览 |
两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为
纪开强1, 李光福1(), 赵亮2
1.上海材料研究所 上海市工程材料应用与评价重点实验室 上海 200437
2.中核集团中核核电运行管理有限公司 海盐 314300
Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5%NaCl Solution
JI Kaiqiang1, LI Guangfu1(), ZHAO Liang2
1.Shanghai Key Lab of Engineering Materials Application and Evaluation,Shanghai Research Institute of Materials, Shanghai 200437, China
2.China National Nuclear Power Operation Management Co. Ltd. , Haiyan 314300, China
全文: PDF(1637 KB)   HTML
摘要: 

采用电化学方法研究了重水堆核电站一回路引漏管线用304L和316L不锈钢在多种环境中的点蚀行为,包括在30和60 ℃模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀电位、阳极极化曲线和临界点蚀温度 (CPT)。对比分析了温度、溶液和材料因素对材料腐蚀行为的影响。结果表明:模拟溶液中材料的点蚀电位和CPT均高于3.5%NaCl溶液中的,材料的点蚀敏感性随着Cl-浓度的增加而升高;对比可见,相同环境下316L不锈钢的点蚀电位和CPT均高于304L不锈钢的,316L不锈钢具有更优异的点蚀抗力;当实验温度由30 ℃提升至60 ℃时,两种溶液中材料的点蚀敏感性均明显升高。根据实验结果讨论了工程上防治相关腐蚀失效的方法。

关键词 重水堆一回路不锈钢点蚀    
Abstract

The pitting corrosion behavior of stainless steels 304L and 316L, as the structural material used for heavy water collection tubing of nuclear power plant, in simulated primary solution of heavy water reactor and 3.5%NaCl solution at 30 and 60 ℃ was studied by means of electrochemical methods, such as measurements of pitting potential, anodic polarization curve and critical pitting temperature (CPT) etc. The effect of temperature, solution- and material-parameters on the corrosion behavior of the two steels was comparatively examined. The results showed that the pitting potential and CPT of the two steels in the simulated solution were higher than that in 3.5%NaCl solution, and the pitting sensitivity of the steels in the simulated solutions increased with the increase of chloride ion concentration. It was found that the pitting potential and CPT of 316L stainless steel were higher than those of 304L stainless steel in the same environment, thus 316L stainless steel had better pitting resistance. When the test temperature was increased from 30 ℃ to 60 ℃, the pitting sensitivity of the steels in both solutions increased significantly. According to the test results, the methods related with the prevention from corrosion failures in engineering practice are discussed.

Key wordsheavy water reactor    primary circuit    stainless steel    pitting
收稿日期: 2020-12-04     
ZTFLH:  TG174  
通讯作者: 李光福     E-mail: guangfuli8298@vip.sina.com
Corresponding author: LI Guangfu     E-mail: guangfuli8298@vip.sina.com
作者简介: 纪开强,男,1994年生,硕士,工程师

引用本文:

纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
Kaiqiang JI, Guangfu LI, Liang ZHAO. Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 653-658.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.252      或      https://www.jcscp.org/CN/Y2021/V41/I5/653

MaterialCSiMnSPCrNiMoFe
316L stainless steel0.0210.411.550.0070.02516.7612.332.05Bal.
304L stainless steel0.0150.561.540.0180.01618.2910.16---Bal.
表1  实验用材料的化学成分
图1  两种材料在30和60 ℃ 3.5%NaCl和模拟溶液溶液中的阳极极化曲线
ParameterEb10(E¯b10)Eb100(E¯b100)Ep(E¯p)
30 ℃60 ℃30 ℃60 ℃30 ℃60 ℃
304L stainless steel simulated677, 665, 666 (669)523, 427, 537 (495)756,714,766 (745)603,546,628 (592)------
304L stainless steel 3.5%NaCl256, 287, 226 (256)88, 113, 100 (100)259,289,268 (272)92,114,102 (102)------
316L stainless steel simulated684, 728, 752 (721)568, 615, 564 (582)757,796,859 (804)647,665,612 (641)82, 143, -8 (73)-105, -28, 45 (-29)
316L stainless steel 3.5%NaCl340, 355, 303 (332)174, 174, 96 (148)363,382,349 (364)175,176,106 (152)50, 60, 36 (48)-89, -114, -71 (-91)
表2  两种材料分别在30和60 ℃模拟溶液和3.5%NaCl溶液中点蚀实验结果 (括号内为平均值)
MaterialSolutionCPT / ℃平均值
304L stainless steelSimulated3232.5
33
3.5%NaCl≤3≤3
≤3
316L stainless steelSimulated4746
45
3.5%NaCl78.5
10
表3  两种不锈钢的CPT实验结果
图2  两种不锈钢在3.5%NaCl溶液和模拟溶液中的CPT实验结果
图3  两种不锈钢在30 ℃的3.5%NaCl溶液和模拟溶液中点蚀形貌
1 da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40: 447
2 Anoop M B, Rao K B, Lakshmanan N. Safety assessment of austenitic steel nuclear power plant pipelines against stress corrosion cracking in the presence of hybrid uncertainties [J]. Int. J. Pres. Ves. Pip., 2008, 85: 238
3 Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces [J]. J. Nucl. Mater., 2006, 348: 191
4 Wei B M. Metal Corrosion Theory and Application [M]. Beijing: Chemical Industry Press, 1984
4 魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1984
5 Cao C N. Corrosion Electrochemical Principles (3rd Edi.) [M]. Beijing: Chemical Industry Press., 2008
5 曹楚南. 腐蚀电化学原理(第三版) [M]. 北京: 化学工业出版社, 2008
6 Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25
7 Xu Y C, Liu T Y. Research progress of corrosion protection technology for oil and natural gas pipeline [J]. Chem. Enterp. Manag., 2014, (33): 76
7 俆跃忱, 刘同友. 管道石油天然气腐蚀防护的相关技术研究进展 [J]. 化工管理, 2014, (33): 76
8 He R Y, Tang X, Zhao X, et al. Research progress of corrosion protection technology for oil and natural gas pipeline [J]. Proc. Equip. Pip., 2013, (1): 53
8 何仁洋, 唐鑫, 赵雄等. 管道石油天然气腐蚀防护的相关技术研究进展 [J]. 化工设备与管道, 2013, (1): 53
9 Wu T. Corrosion protection techniques in oil and gas collection and transportation pipelines [J]. Oil-Gasfield Surf. Eng., 2014, (4): 85
9 吴涛. 油气集输管道内腐蚀防护技术 [J]. 油气田地面工程, 2014, (4): 85
10 Gu C X, Ji G J, Zhu G J, et al. Ship corrosion and anti-corrosion measures [J]. Ship Eng., 2010, 32(3): 1
10 顾彩香, 吉桂军, 朱冠军等. 船舶的腐蚀与防腐措施 [J]. 船舶工程, 2010, 32(3): 1
11 Gu S C, Zhang Y M. Qinshan Phase III CANDU6 heavy water reactor nuclear power plant [J]. Energy Res. Inform., 1996, (4): 43
11 顾树川, 张园茗. 秦山三期CANDU6型重水堆核电站 [J]. 能源研究与信息, 1996, (4): 43
12 Li G F, Zhao L, Yang X H, et al. Stress corrosion cracking behaviors of corrosion-resistant materials for heavy-water collection system in high temperature solution and vapor environments and their significance for industry [A]. The 4th International Symposium on Materials and Reliability in Nuclear Power Plant [C]. Shenyang, 2015: 126
12 李光福, 赵亮, 杨兴红等. 重水回收系统用耐蚀材料在高温水及蒸汽环境中的应力腐蚀破裂行为及工程意义 [A]. 第四届核电站材料与可靠性国际研讨会 [C]. 沈阳, 2015: 126
13 Li R, Jin Y T, Hu J, et al. Electrochemical behavior of corrosion at normal temperature of three typical metals in coast nuclear power plants [J]. Corros. Prot., 2016, 37: 730
13 李润, 金玉婷, 胡俊等. 沿海核电站三种典型金属材料的常温腐蚀电化学行为 [J]. 腐蚀与防护, 2016, 37: 730
14 Wang J M, Arjmand F, Du D H, et al. Electrochemical corrosion behaviors of 316 L stainless steel used in PWR primary pipes [J]. Chin. J. Eng., 2017, 39: 1355
14 汪家梅, Arjmand F, 杜东海等. 压水堆一回路主管道316L不锈钢的电化学腐蚀行为 [J]. 工程科学学报, 2017, 39: 1355
15 Li Y, Fang K W, Liu F H. Influence of Cl- on development behavior from pitting corrosion to stress corrosion cracking of 304L stainless steel [J]. Corros. Prot., 2012, 33: 955
15 李岩, 方可伟, 刘飞华. Cl-对304L不锈钢从点蚀到应力腐蚀转变行为的影响 [J]. 腐蚀与防护, 2012, 33: 955
16 Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl- on critical pitting temperature for 304 and 316 stainless steels [J]. Corros. Sci. Prot. Technol., 2007, 19: 16
16 吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响 [J]. 腐蚀科学与防护技术, 2007, 19: 16
17 Chen X J, Wang H L, Chen Z J. Mechanism of molybdate for inhibition of pitting corrosion of stainless steel [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 213
17 陈旭俊, 王海林, 陈振家. 钼酸盐对不锈钢孔蚀抑制作用机理的研究 [J]. 中国腐蚀与防护学报, 1992, 12: 213
18 Hua H Z, Zhao G Z, Li L X, et al. An XPS study of passive film and its breakdown on ferritic stainiess steel in Cl--containing neutral solution [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 233
18 华惠中, 赵国珍, 李丽霞等. Fe-Cr-Mo系铁素体不锈钢在中性氯离子介质中钝化膜及其破坏的XPS研究 [J]. 中国腐蚀与防护学报, 1987, 7: 233
19 Yang W, Pourbaix A. Effect of chromium and molybdenum on the propagation of localized corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 1983, 3: 22
19 杨武, Pourbaix A. 铬和钼对钢的局部腐蚀发展过程的影响 [J]. 中国腐蚀与防护学报, 1983, 3: 22
20 Yang W, Hua H Z. Study on experimental potential - pH diagram of Fe-Cr-Mo ferrite stainless steel in chloride medium [J]. J. Chin. Soc. Corros. Prot., 1984, 4: 243
20 杨武, 华惠中. Fe-Cr-Mo系铁素体不锈钢在氯化物介质中的实验电位-pH图研究 [J]. 中国腐蚀与防护学报, 1984, 4: 243
21 Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
22 Li G M, Guo X P, Zheng J S. Pitting corrosion behavior of stainless steel 304 in carbon dioxide environments [J]. J. Iron Steel Res. Int., 2004, 11: 47
23 Yang R C, Bi H J, Niu S R, et al. Influence of temperature and mass fraction of Cl- on pitting corrosion resistance of 304 stainless steel [J]. J. Lanzhou Univ. Technol., 2010, 36(5): 5
23 杨瑞成, 毕海娟, 牛绍蕊等. 温度和Cl-质量分数对304不锈钢耐点蚀性能的影响 [J]. 兰州理工大学学报, 2010, 36(5): 5
[1] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[2] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[3] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[4] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[5] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[6] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[7] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[8] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[9] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[10] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[11] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[12] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[13] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[14] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[15] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.