Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 828-836    DOI: 10.11902/1005.4537.2020.153
  研究报告 本期目录 | 过刊浏览 |
表面状态对TC4钛合金的耐蚀性影响
刘星1,2, 冉斗1,2, 孟惠民1(), 李全德1,2,3, 巩秀芳2,3, 隆彬2,3
1.北京科技大学 新材料技术研究院 北京 100083
2.长寿命高温材料国家重点实验室 德阳 618000
3.东方汽轮机有限公司 德阳 618000
Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy
LIU Xing1,2, RAN Dou1,2, MENG Huimin1(), LI Quande1,2,3, GONG Xiufang2,3, LONG Bin2,3
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. Ltd. , Deyang 618000, China
全文: PDF(6642 KB)   HTML
摘要: 

利用透射电镜、能谱仪、激光共聚焦显微镜和X射线衍射仪分析了喷丸处理后TC4钛合金的表面形貌和粗糙度;采用动电位极化曲线、电化学阻抗谱和Mott-Schottky曲线对喷丸处理前后的TC4钛合金在3.5%NaCl溶液中的耐蚀性进行了分析。结果表明,与少量喷丸残留物相比,表面粗糙度对耐蚀性影响较大。抛光后的TC4钛合金腐蚀电流密度最低,容抗弧半径最大,钝化膜缺陷最少,耐蚀性最强。喷丸处理后,铸钢丸喷丸表面的钝化膜最稳定,耐蚀性相对较高。因此,光滑表面有助于形成均匀的钝化膜层,增加TC4钛合金的耐蚀性。

关键词 TC4钛合金喷丸处理表面状态粗糙度耐蚀性    
Abstract

In order to promote the application of TC4 Ti-alloy for steam turbine blades, the influence of the surface state after shot peening on the corrosion resistance of TC4 Ti-alloy was assessed. The surface morphology and roughness of the TC4 sample after shot peening were characterized by means of transmission electron microscope, energy dispersive spectrometer, laser scanning confocal microscope and X-ray diffractometer. The corrosion resistance of the bare and shot peened TC4 Ti-alloy in 3.5%NaCl solution was comparatively examined by means of potential polarization curve measurement, electrochemical impedance spectroscopy and Mott-Schottky curve measurement. The results show that the surface roughness has a greater influence on the corrosion resistance rather than the small amount of shot peening residues. The polished TC4 Ti-alloy has the lowest corrosion current density, the largest capacitive resistance arc, the least defect of passivation film and the strongest corrosion resistance. After shot peening, the passivation film formed on the surface of the TC4 Ti-alloy peened by cast steel shots is the most stable, and the corrosion resistance is relatively high. Therefore, the smooth surface helps to form a uniform passivation film and increases the corrosion resistance of the TC4 Ti-alloy in 3.5%NaCl solution.

Key wordsTC4 Ti-alloy    shot peening    surface state    roughness    corrosion resistance
收稿日期: 2020-08-18     
ZTFLH:  TG178  
基金资助:四川省科技计划应用基础研究项目(2019YJ0699)
通讯作者: 孟惠民     E-mail: menghm16@126.com
Corresponding author: MENG Huimin     E-mail: menghm16@126.com
作者简介: 刘星,男,1994年生,硕士生

引用本文:

刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
Xing LIU, Dou RAN, Huimin MENG, Quande LI, Xiufang GONG, Bin LONG. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 828-836.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.153      或      https://www.jcscp.org/CN/Y2021/V41/I6/828

图1  喷丸前TC4钛合金表面形貌
图2  TC4钛合金经铸钢丸喷丸、玻璃丸喷丸和复合喷丸处理后的表面形貌
图3  TC4钛合金经铸钢丸喷丸、玻璃丸喷丸和复合喷丸处理后表面三维形貌图
SampleSurface roughness / μmSpecific surface area
RaRqRz
TC4 Ti-alloy0.0590.0790.6121.000
CSSP0.5500.6843.7121.076
GSP0.6020.7373.6991.105
CSP0.6760.8434.4501.119
表1  未处理的TC4钛合金及经铸钢丸喷丸、玻璃丸喷丸和复合喷丸处理的表面粗糙度与比表面积
图4  未处理的TC4钛合金及经喷丸处理的表面EDS结果
图5  未处理的TC4钛合金及喷丸处理后TC4钛合金的XRD谱
图6  未处理的TC4钛合金及喷丸处理TC4钛合金在3.5%NaCl溶液中的动电位极化曲线
SampleEcorr / V vs.SCEIcorr / A·cm-2Ipass / A·cm-2
TC4 Ti-alloy-0.262.89×10-82.59×10-6
CSSP0.025.04×10-83.57×10-6
GSP-0.135.37×10-83.93×10-6
CSP-0.085.56×10-84.19×10-6
表2  TC4钛合金基材及喷丸处理后在3.5%NaCl溶液中的动电位极化测试拟合结果
图7  未处理的TC4钛合金及喷丸处理TC4钛合金在3.5%NaCl溶液中的电化学阻抗谱
图8  未处理的TC4钛合金及喷丸处理TC4钛合金在3.5%NaCl溶液中的等效拟合电路图
SampleRs / Ω·cm2Q1 / Ω-1·cm-2·snn1R1 / Ω·cm2Q2 / Ω-1·cm-2·snn2R2 / Ω·cm2χ2
TC4 Ti-alloy28.935.99×10-60.88532.381.59×10-50.99878.88×1063.06×10-5
CSSP25.801.99×10-50.87572212.88×10-60.94953.71×1066.58×10-5
GSP24.861.93×10-50.869920.49.39×10-60.91512.56×1061.23×10-5
CSP27.432.96×10-50.8656135.24.55×10-60.90162.07×1064.99×10-5
表3  未处理的TC4钛合金及喷丸处理后在3.5%NaCl溶液中的电化学阻抗拟合分析结果
图9  未处理的TC4钛合金及复合喷丸处理后在3.5%NaCl溶液中的Mott-Schottky曲线
图10  未处理的TC4钛合金及喷丸处理后在3.5%NaCl溶液中钝化膜的Nd和Efb
1 Prakash C, Singh S, Pruncu C I, et al. Surface modification of Ti-6Al-4V alloy by electrical discharge coating process using partially sintered Ti-Nb electrode [J]. Materials (Basel), 2019, 12: 1006
2 Krawiec H, Vignal V, Schwarzenboeck E, et al. Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti-6Al-4V in sodium chloride solution [J]. Electrochim. Acta, 2013, 104: 400
3 Kuang Y Q. Research on the application prospect of titanium alloy on steam turbine blades [J]. Jiangsu Sci. Technol. Inform., 2013, (1): 67
3 匡逸强. 钛合金在汽轮机叶片上的应用前景研究 [J]. 江苏科技信息, 2013, (1): 67
4 Chen G Q, Tian T Y, Zhang X H, et al. Microstructure and fatigue properties of Ti-6Al-4V titanium alloy treated by wet shot peening of ceramic beads [J]. Chin. J. Nonferrous Met., 2013, 23: 122
4 陈国清, 田唐永, 张新华等. Ti-6Al-4V钛合金陶瓷湿喷丸表面强化微观组织与疲劳性能 [J]. 中国有色金属学报, 2013, 23: 122
5 Yang C, Liu Y G, Li M Q. Characteristics and formation mechanisms of defects in surface layer of TC17 subjected to high energy shot peening [J]. Appl. Surf. Sci., 2020, 509: 144711
6 Oh-Ishi K, Edalati K, Kim H S, et al. High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum-copper system [J]. Acta Mater., 2013, 61: 3482
7 Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Mater., 2012, 60: 6814
8 Zhao R, Wu Z, Liu L, et al. Research progress in effect of shot peening on corrosion resistance of metallic materials [J]. Heat Treat. Met., 2018, 43(12): 88
8 赵蓉, 吴忠, 刘磊等. 喷丸对金属材料耐蚀性能影响的研究进展 [J]. 金属热处理, 2018, 43(12): 88
9 Li K, Fu X S, Li Z Q, et al. Fatigue fracture mechanism of Ti-6Al-4V alloy strengthened by wet peening treatment [J]. Rare Met. Mater. Eng., 2017, 46: 3068
9 李康, 付雪松, 李志强等. 湿喷丸强化对TC4合金疲劳断裂机制的影响 [J]. 稀有金属材料与工程, 2017, 46: 3068
10 Zhang C H, Xie G, Song W, et al. Fatigue performance of surface nanocrystallized TC4 [J]. Rare Met. Mater. Eng., 2015, 44: 866
10 张聪惠, 解钢, 宋薇等. 表面纳米化TC4疲劳性能研究 [J]. 稀有金属材料与工程, 2015, 44: 866
11 Huang Y, Zhou J Z, Li J, et al. Effects of cryogenic laser peening on damping characteristics and vibration fatigue life of TC6 titanium alloy [J]. Chin. J. Laser, 2020, 47: 0402011
11 黄宇, 周建忠, 李京等. 深冷激光喷丸对TC6钛合金阻尼特性及振动疲劳寿命的影响 [J]. 中国激光, 2020, 47: 0402011
12 Tan L, Yao C F, Zhang D H, et al. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades [J]. Int. J. Fatigue, 2020, 136: 105630
13 Soyama H, Takeo F. Effect of various peening methods on the fatigue properties of titanium Alloy Ti6Al4V manufactured by direct metal laser sintering and electron beam melting [J]. Materials, 2020, 13: 2216
14 Yang L. Analysis of surface roughness and impairment after surface nanocrystallization for HSP [D]. Dalian: Dalian Jiaotong University, 2006
14 杨磊. 高能喷丸表面纳米化后表面粗糙度和损伤的研究 [D]. 大连: 大连交通大学, 2006
15 Lee H S, Kim D S, Jung J S, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel [J]. Corros. Sci., 2009, 51: 2826
16 Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
17 Chi G F, Yi D Q, Liu H Q. Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.%HCl solution at 35  ℃ [J]. J. Mater. Res. Technol., 2020, 9: 1162
18 Xu J, Bao X K, Jiang S Y. In vitro corrosion resistance of Ta2N nanocrystalline coating in simulated body fluids [J]. Acta Metall. Sin., 2018, 54: 443
18 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究 [J]. 金属学报, 2018, 54: 443
19 Li X, Dong Y C, Dan Z H, et al. Corrosion behavior of ultrafine grained pure ti processed by equal channel angular pressing [J]. Acta Metall. Sin., 2019, 55: 967
19 李鑫, 董月成, 淡振华等. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究 [J]. 金属学报, 2019, 55: 967
20 Xie F X, He X B, Cao S L, et al. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications [J]. Electrochim. Acta, 2013, 105: 121
21 Shukla A K, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions [J]. Intermetallics, 2005, 13: 631
22 Yang Y J, Zhang X Y, Liu M H. Galvanic corrosion of TB5 titanium alloy of anodic oxidation film [J]. J. Aeronaut. Mater., 2015, 35(5): 57
22 杨勇进, 张晓云, 刘明辉. TB5钛合金脉冲阳极氧化膜电偶腐蚀性能研究 [J]. 航空材料学报, 2015, 35(5): 57
23 Yang F, Wu J P, Guo D Z, et al. Electrochemical corrosion of Ti-Ta alloy in nitric acid [J]. Titanium Ind. Prog., 2018, 35(2): 22
23 杨帆, 吴金平, 郭荻子等. Ti-Ta合金在硝酸中电化学腐蚀研究 [J]. 钛工业进展, 2018, 35(2): 22
24 Shi K Y, Zhang J Z, Zhang Y, et al. Preparation and corrosion resistance of Nb2N coating on TC4 Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 313
24 史昆玉, 张进中, 张毅等. Nb2N涂层制备及其耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 313
25 Wang L, Yi D Q, Liu H Q, et al. Effect of Ru on corrosion behavior of Ti-6Al-4V alloy and its mechanism [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 25
25 王乐, 易丹青, 刘会群等. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究 [J]. 中国腐蚀与防护学报, 2020, 40: 25
26 Jiang Z L, Xin D, Middleton H. Investigation on passivity of titanium under steady-state conditions in acidic solutions [J]. Mater. Chem. Phys., 2011, 126: 859
27 Jovic V D, Barsoum M W. Corrosion behavior and passive film characteristics formed on Ti, Ti3SiC2, and Ti4AlN3 in H2SO4 and HCl [J]. J. Electrochem. Soc., 2004, 151: B71
28 Yan S K, Zheng D J, Wei J, et al. Electrochemical activation of passivated pure Titanium in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 123
28 严少坤, 郑大江, 韦江等. 钝性纯Ti在人工海水中的电化学活化行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 123
29 Silva R A, Walls M, Rondot B, et al. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery [J]. J. Mater. Sci.: Mater. Med., 2002, 13: 495
30 Schneider M, Schroth S, Schilm J, et al. Micro-EIS of anodic thin oxide films on titanium for capacitor applications [J]. Electrochim. Acta, 2009, 54: 2663
31 Fattah-Alhosseini A, Imantalab O, Ansari G. The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution [J]. Mater. Sci. Eng., 2017, 71C: 827
32 Zheng Z J, Gao Y, Gui Y, et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing [J]. Corros. Sci., 2012, 54: 60
33 Zhang C H, Song W, Wang Y M, et al. Effect of surface strengthening on corrosion property of Ti-6Al-4V in 3.5%NaCl [J]. Appl. Mech. Mater., 2016, 853: 473
[1] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[2] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[3] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[4] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[5] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[6] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[7] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[8] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[9] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[10] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[11] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[12] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[13] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[14] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[15] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.