Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 625-632    DOI: 10.11902/1005.4537.2020.255
  研究报告 本期目录 | 过刊浏览 |
S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究
张龙华1, 李长君2, 潘磊2, 韩思柯1, 王昕1, 崔中雨1()
1.中国海洋大学材料科学与工程学院 青岛 266100
2.新疆宝莫环境工程有限公司 克拉玛依 834000
Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater
ZHANG Longhua1, LI Changjun2, PAN Lei2, HAN Sike1, WANG Xin1, CUI Zhongyu1()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.Xinjiang Baomo Environment Engineering Co. Ltd. , Karamay 834000, China
全文: PDF(4434 KB)   HTML
摘要: 

研究了不同浓度S2-对316L不锈钢在模拟油田污水中的腐蚀行为的影响。通过电化学测试和XPS等方法分析了S2-对316L不锈钢在油田污水中电化学及表面膜层性能的影响。结果表明,S2-的存在加速316L不锈钢的腐蚀,并且随着S2-浓度的升高,腐蚀倾向增大,耐蚀性下降。XPS结果显示,316L不锈钢钝化膜中出现了FeS,阻碍了钝化膜的进一步生长,外层钝化膜疏松,保护性降低。

关键词 316L不锈钢油田污水硫化物钝化膜    
Abstract

The influence of S2- concentration on the corrosion behavior of 316L stainless steel in a simulated oilfield wastewater was studied by means of electrochemical technique and X-ray photoelectron spectroscopy (XPS). The results show that the existence of S2- can accelerate the corrosion of 316L, and with the increase of S2- concentration, its corrosion tendency increases and the corrosion resistance decreases. XPS results demonstrate that FeS presents in the passive film of 316L stainless steel, which hinders the further growth of the film. Moreover, the outer layer of passive film is loose, therewith the protection performance of the film is deteriorated.

Key words316L stainless steel    oilfield wastewater    sulfide    passive film
收稿日期: 2020-12-09     
ZTFLH:  TG172  
基金资助:山东省重点研发计划公益类专项(2019GHY112050)
通讯作者: 崔中雨     E-mail: cuizhongyu@ouc.edu.cn
Corresponding author: CUI Zhongyu     E-mail: cuizhongyu@ouc.edu.cn
作者简介: 张龙华,男,1995年生,硕士生

引用本文:

张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
Longhua ZHANG, Changjun LI, Lei PAN, Sike HAN, Xin WANG, Zhongyu CUI. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 625-632.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.255      或      https://www.jcscp.org/CN/Y2021/V41/I5/625

图1  316L不锈钢在不同S2-浓度模拟石油污水中的动电位循环极化曲线
图2  316L不锈钢在不同浓度S2-溶液中及电位下的I-t变化曲线
图3  不同S2-浓度下稳态电流密度与施加电势的关系图
图4  不同S2-浓度下随电位变化的Nyquist图和Bode图
图5  用于解释316L不锈钢表面钝化膜阻抗谱的等效电路模型
E / VSCESulfide concentration / mg·L-1Rs / Ω·cm2Q1 / 10-4 Ω-1·cm-2·snnR1 / Ω·cm2W / Ω·cm2·s-0.52 / 10-3
-0.106.87.670.8279.2---2.32
506.11.220.841.1148.23.82
1006.61.110.861.9144.72.62
2005.31.360.780.687.52.56
-0.206.96.120.8771.1---2.13
505.31.310.861.7147.73.98
1007.31.290.821.2134.51.18
2006.31.510.790.594.22.41
-0.30------------------
505.11.750.831.2157.81.26
1007.31.410.940.9182.51.90
2007.41.970.920.4167.81.11
-0.40------------------
504.91.610.8942.7---1.05
1004.33.310.8537.3---1.06
2004.84.310.8924.9---1.61
表1  等效电路得到的EIS拟合参数值
图6  316L不锈钢在-0.1 VSCE电势下形成的钝化膜内的主要元素的XPS谱
1 Chail G, Kangas P. Super and hyper duplex stainless steels: Structures, properties and applications [J]. Proc. Struct. Integr., 2016, 2: 1755
2 Wan H X, Yang X J, Liu Z Y, et al. Pitting behavior of L415 pipeline steel in simulated leaching liquid environment [J]. J. Mater. Eng. Perform., 2017, 26: 715
3 Peng W S, Hou J, Ding K K, et al. Corrosion behavior of 304 stainless steel in deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 145
3 彭文山, 侯健, 丁康康等. 深海环境中304不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 145
4 Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
4 张浩, 杜楠, 周文杰等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517
5 Li Y, Li C Y, Chen X, et al. Gray relationship analysis on corrosion behavior of super 13Cr stainless steel in environments of marine oil and gas field [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 471
5 李洋, 李承媛, 陈旭等. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析 [J]. 中国腐蚀与防护学报, 2018, 38: 471
6 Li F S, An M Z, Liu G Z, et al. Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels [J]. Mater. Chem. Phys., 2009, 113: 971
7 Payne M K, Stolt M H. Understanding sulfide distribution in subaqueous soil systems in southern New England, USA [J]. Geoderma, 2017, 308: 207
8 Webb E G, Paik C H, Alkire R C. Local detection of dissolved sulfur species from inclusions in stainless steel using Ag microelectrode [J]. Electrochem. Solid-State Lett., 2001, 4: B15
9 Ding J H, Lei Z, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures [J]. Appl. Surf. Sci., 2014, 289: 33
10 Wiener M S, Salas B V, Quintero-Núñez M, et al. Effect of H2S on corrosion in polluted waters: A review [J]. Corros. Eng. Sci. Technol., 2006, 41: 221
11 Mischler S, Vogel A, Mathieu H J, et al. The chemical composition of the passive film on Fe-24Cr and Fe-24Cr-11Mo studied by AES, XPS and SIMS [J]. Corros. Sci., 1991, 32: 925
12 Guo Q, Liu J H, Yu M, et al. Effect of passive film on mechanical properties of martensitic stainless steel 15-5PH in a neutral NaCl solution [J]. Appl. Surf. Sci., 2015, 327: 313
13 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
13 胡玉婷, 董鹏飞, 蒋立等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
14 Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution [J]. Corros. Sci., 2018, 131: 164
15 Chasse K R, Singh P M. Corrosion study of super ferritic stainless steel UNS S44660 (26Cr-3Ni-3Mo) and several other stainless steel grades (UNS S31603, S32101, and S32205) in caustic solution containing sodium sulfide [J]. Metall. Mater. Trans., 2013, 44A: 5039
16 Macdonald D D, Sun A. An electrochemical impedance spectroscopic study of the passive state on Alloy-22 [J]. Electrochim. Acta, 2006, 51: 1767
17 Lu P, Sharifi-Asl S, Kursten B, et al. The irreversibility of the passive state of carbon steel in the alkaline concrete pore solution under simulated anoxic conditions [J]. J. Electrochem. Soc., 2015, 162: C572
18 Mesquita T J, Chauveau E, Mantel M, et al. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions [J]. Appl. Surf. Sci., 2013, 270: 90
19 Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
20 Mohammadi M, Choudhary L, Gadala I M, et al. Electrochemical and passive layer characterizations of 304L, 316L, and duplex 2205 stainless steels in thiosulfate gold leaching solutions [J]. J. Electrochem. Soc., 2016, 163: C883
21 Betova I, Bojinov M, Hyökyvirta O, et al. Effect of sulphide on the corrosion behaviour of AISI 316L stainless steel and its constituent elements in simulated Kraft digester conditions [J]. Corros. Sci., 2010, 52: 1499
22 Wallinder D, Pan J, Leygraf C, et al. Eis and XPS study of surface modification of 316LVM stainless steel after passivation [J]. Corros. Sci., 1998, 41: 275
[1] 宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[2] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[3] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[4] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[5] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[11] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[12] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[13] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[14] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[15] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.