Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 804-810    DOI: 10.11902/1005.4537.2020.232
  研究报告 本期目录 | 过刊浏览 |
硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响
安易强, 王昕, 崔中雨()
中国海洋大学材料科学与工程学院 青岛 266100
Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution
AN Yiqiang, WANG Xin, CUI Zhongyu()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(3137 KB)   HTML
摘要: 

通过动电位极化曲线、电化学阻抗谱以及Mott-Schottky测试研究了经硝酸钝化后的304不锈钢在模拟混凝土孔隙液中的耐蚀性。结果表明,硝酸钝化提高了304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度,未钝化处理及钝化0.5,2和24 h的临界Cl-浓度分别为0.05~0.1,4~5,2~4和1~2 mol/L。Mott-Schottky测试结果表明,经硝酸钝化处理后304不锈钢的钝化膜载流子密度减小,膜稳定性增加,耐蚀性提高。

关键词 304不锈钢硝酸钝化混凝土孔隙液点蚀临界Cl-浓度    
Abstract

The corrosion resistance of 304 stainless steel passivated by nitric acid in simulated concrete pore solutions was studied through the polarization curves, electrochemical impedance spectroscopy (EIS) and Mott-Schottky measurement. The results indicate that the critical Cl- concentration for the corrosion of 304 stainless steel in the simulated concrete pore solution was increased after nitric acid passivation. The bare steel and the steel subjected to passivation treatment for 0.5, 2 and 24 h presented different range of critical chloride ion concentrations, namely 0.05~0.1, 4~5, 2~4 and 1~2 mol/L, respectively. The Mott-Schottky test results show that the nitric acid passivation treatment reduces the carrier density of the passivation film and increases the stability of the film. The EIS measurement by potentiostatic polarization is suitable for detecting the critical Cl- concentration.

Key words304 stainless steel    nitric acid passivation    concrete pore solution    pitting corrosion    critical Cl- concentration
收稿日期: 2020-11-12     
ZTFLH:  TG172  
基金资助:中央高校基本科研业务费项目(201762008)
通讯作者: 崔中雨     E-mail: cuizhongyu@ouc.edu.cn
Corresponding author: CUI Zhongyu     E-mail: cuizhongyu@ouc.edu.cn
作者简介: 安易强,男,1995年生,硕士生

引用本文:

安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
Yiqiang AN, Xin WANG, Zhongyu CUI. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 804-810.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.232      或      https://www.jcscp.org/CN/Y2021/V41/I6/804

图1  304不锈钢在含Cl-模拟混凝土孔隙液中的动电位极化测试
图2  304不锈钢不同钝化处理的点蚀电位与Cl-浓度的关系统计
图3  不同钝化处理的304不锈钢在恒电位550 mV极化后的EIS结果
图4  经不同时间钝化处理的304不锈钢在0.5 mol/L NaCl溶液中的EIS测试
Time / hRs / Ω·cm2Qf / 10-5 Ω-1·cm-2·snnRf / 105 Ω·cm2
06.85.30.921.1
0.56.13.70.937.7
27.93.30.814.0
247.59.40.841.9
表1  经不同时间钝化处理的304不锈钢在0.5 mol/L NaCl溶液中的EIS拟合结果
图5  304不锈钢不同钝化处理的Mott-Schottky测试结果
Passivation time / hSlopeND / 1020 cm-3EFB / VSCE
023.73.8-0.49
0.580.21.1-0.48
240.32.2-0.51
2424.03.8-0.47
表2  n型半导体相关参数
1 Bertolini L, Bolzoni F, Pastore T, et al. Behaviour of stainless steel in simulated concrete pore solution [J]. Br. Corros. J., 1996, 31: 218
2 Wu X, Sun Y T, Liu Y Y, et al. The critical pitting chloride concentration of various stainless steels measured by an electrochemical method [J]. J. Electrochem. Soc., 2018, 165: C939
3 Baddoo N R. Stainless steel in construction: a review of research, applications, challenges and opportunities [J]. J. Const. Steel Res., 2008, 64: 1199
4 Kouřil M, Novák P, Bojko M. Threshold chloride concentration for stainless steels activation in concrete pore solutions [J]. Cem. Concr. Res., 2010, 40: 431
5 Moser R D, Singh P M, Kahn L F, et al. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions [J]. Corros. Sci., 2012, 57: 241
6 Thangavel K, Rengaswamy N S. Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete [J]. Cem. Concr. Compos., 1998, 20: 283
7 Hurley M F, Scully J R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel [J]. Corrosion, 2006, 62: 892
8 Elsener B, Addari D, Coray S, et al. Stainless steel reinforcing bars -reason for their high pitting corrosion resistance [J]. Mater. Corros., 2011, 62: 111
9 Wang L W, Tian H Y, Gao H, et al. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment [J]. Appl. Surf. Sci., 2019, 492: 792
10 Zheng Z B, Zheng Y G. Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2016, 112: 657
11 Noh J S, Laycock N J, Gao W, et al. Effects of nitric acid passivation on the pitting resistance of 316 stainless steel [J]. Corros. Sci., 2000, 42: 2069
12 Wallinder D, Pan J, Leygraf C, et al. EIS and XPS study of surface modification of 316LVM stainless steel after passivation [J]. Corros. Sci., 1998, 41: 275
13 Hultquist G, Leygraf C. Surface composition of a type 316 stainless steel related to initiation of crevice corrosion [J]. Corrosion, 1980, 36: 126
14 Barbosa M A, Garrido A, Campilho A, et al. The surface composition and corrosion behaviour of AISI 304 stainless steel after immersion in 20% HNO3 solution [J]. Corros. Sci., 1991, 32: 179
15 Barbosa M A. The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid [J]. Corros. Sci., 1983, 23: 1293
16 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys. -Chim. Sin., 2005, 21: 740
16 林玉华, 杜荣归, 胡融刚等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
17 Kong X G, Gao Z M. Rare earth elements effect on the electrochemical behavior of the passive film formed on stainless steel [A]. Abstracts of 2014 National Symposium on Corrosion Electrochemistry and Testing Methods [C]. Harbin, 2014: 1
17 孔宪刚, 高志明. 稀土对不锈钢钝化膜的耐蚀性与半导体特性的影响 [A]. 2014年全国腐蚀电化学及测试方法学术交流会摘要集 [C]. 哈尔滨, 2014: 1
18 Padhy N, Paul R, Mudali U K, et al. Morphological and compositional analysis of passive film on austenitic stainless steel in nitric acid medium [J]. Appl. Surf. Sci., 2011, 257: 5088
19 Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: effect of carbonation and chloride content [J]. Corros. Sci., 2004, 46: 2681
20 Miao W H, Hu W B, Gao Z M, et al. Corrosion behavior of 304SS in simulated pore solution of concrete for use in marine environment [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 543
20 苗伟行, 胡文彬, 高志明等. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 543
21 Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete—A review [J]. Cem. Concr. Res., 2009, 39: 1122
22 Kocijan A, Merl D K, Jenko M. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride [J]. Corros. Sci., 2011, 53: 776
23 Hakiki N E, Belo M D C, Simões A M P, et al. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145: 3821
24 Zheng Z J, Gao Y, Gui Y, et al. Studying the fine microstructure of the passive film on nanocrystalline 304 stainless steel by EIS, XPS, and AFM [J]. J. Solid State Electrochem., 2014, 18: 2201
25 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
26 Sunseri C, Piazza S, Quarto F D. Photocurrent spectroscopic investigations of passive films on chromium [J]. J. Electrochem. Soc., 1990, 137: 2411
27 Yassar R S, Scudiero L, Alamr A S, et al. Microstructure–mechanical and chemical behavior relationships in passive thin films [J]. Thin Solid Films, 2010, 518: 2757
28 Song G L, Cao C N, Lin H C. The stability of the transpassive film on 304 stainless steel with post-treatment [J]. Corros. Sci., 1994, 36: 165
29 Rossi A, Elsener B. Role of the interface oxide film/alloy composition and stability of stainless steels [J]. Mater. Corros., 2012, 63: 1188
30 Macdonald D D, Urquidi-Macdonald M. Theory of steady‐state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
[1] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[2] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[4] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[5] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[6] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[7] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[8] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[9] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[10] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[11] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[12] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[13] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[14] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[15] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.