Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 495-507    DOI: 10.11902/1005.4537.2019.120
  综合评述 本期目录 | 过刊浏览 |
空间分辨技术在金属腐蚀原位监测中的应用
赵鹏雄, 武玮, 淡勇()
西北大学化工学院 西安 710069
Application of Spatial-resolution Technology for In-situ Monitoring of Metal Corrosion
ZHAO Pengxiong, WU Wei, DAN Yong()
School of Chemical Engineering, Northwest University, Xi'an 710069, China
全文: PDF(30317 KB)   HTML
摘要: 

综述了腐蚀领域几种经典的空间分辨技术,并详细探讨了每一种技术的工作原理、优缺点及其在金属腐蚀原位监测领域的应用现状和发展前景。

关键词 金属腐蚀空间分辨技术原位    
Abstract

Corrosion is one of the main causes of metal material failure. In corrosion research, it is difficult to obtain accurate information on the corrosion evolution. The development of spatial-resolution technology enables the in-situ observation of metal corrosion processes to be realized. By combining the spatial-resolution technology and electrochemical techniques, more microscopic metal corrosion information can be obtained, which facilitates more accurate acquisition of corrosion information and provides reliable support for the illustration of corrosion mechanism. This paper reviews several classical spatial-resolution techniques in the field of corrosion in terms their working principle, advantages and disadvantages etc. The industrial CCD camera, digital holographic surface imaging technology, X-ray computed tomography, optical microscope, scanning electron microscope, atomic force microscope and transmission electron microscope are introduced. The application status and development prospects of each technology in the field of in-situ monitoring of metal corrosion are discussed. Finally, these spatial-resolution techniques are compared and corresponding recommendations for use are proposed in the review.

Key wordsmetal corrosion    spatial-resolved technology    in-situ
收稿日期: 2019-08-11     
ZTFLH:  TG172  
基金资助:国家自然科学基金(21576224);国家自然科学基金(51605368);陕西省自然科学基础研究计划(2020JM-436)
通讯作者: 淡勇     E-mail: danyong@nwu.edu.cn
Corresponding author: DAN Yong     E-mail: danyong@nwu.edu.cn
作者简介: 赵鹏雄,男,1995年生,硕士生

引用本文:

赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
Pengxiong ZHAO, Wei WU, Yong DAN. Application of Spatial-resolution Technology for In-situ Monitoring of Metal Corrosion. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 495-507.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.120      或      https://www.jcscp.org/CN/Y2020/V40/I6/495

图1  数字图像相关与电化学技术原位监测装置示意图[19]
图2  合金600在连四硫酸盐溶液中SCC原位实验CCD图像和DIC分析[19]
图3  数字全息表面成像系统的实验装置[23]
图4  304不锈钢在0.30 V下0.1 mol·L-1 FeCl3溶液中恒电位测量期间不同时间的全息图和相应的相图[23]
图5  用于304L不锈钢试样原位X射线断层扫描实验的可施加应变的微型电化学系统和X射线CT原位装置[31]
图6  第一次电化学极化扫描后试样的X射线CT图像,第二次电位-动态极化扫描后的X射线CT图像和试样的SEM像[31]
图7  用于应力腐蚀实验的光学显微镜原位测试装置[40]
图8  7075铝合金在光学显微镜下的SCC过程及相应的应力-应变曲线[40]
图9  X80管线钢在不同溶液中浸泡1 h后腐蚀表面蚀坑的SEM像[45]
图10  HS-AFM原位实验平台三电极装置的局部放大图[58]
图11  敏化AISI 304不锈钢在1%NaCl水溶液中晶界腐蚀的AFM像[58]
图12  极化测量后试样的动电位极化曲线和腐蚀过程STEM图像[66]
[1] Wang Q H, Gong T. Analysis of Fukushima nuclear power accident and its revelation [J]. Southern Power Syst. Technol., 2011, 5(3): 17
[1] (王庆红, 龚婷. 福岛核电事故分析及其启示 [J]. 南方电网技术, 2011, 5(3): 17)
[2] Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC [J]. China Offshore Oil Gas, 2017, 29(5): 157
[2] (王红红, 刘国恒. 中国海油海底管道事故统计及分析 [J]. 中国海上油气, 2017, 29(5): 157)
[3] Zhou H M, Tang L S. Leakage accident analysis of first absorption column in melamine unit [J]. China Chem. Ind. Equip., 2018, 20(3): 21
[3] (周海明, 唐联生. 三聚氰胺装置一吸塔泄漏事故分析 [J]. 中国化工装备, 2018, 20(3): 21)
[4] Zhou W, Tong L H, Xia S, et al. Cause analysis of explosive and flammable accident occurred in pipeline for cyclohexane oxidation [J]. Process Equip. Piping, 2018, 55(3): 69
[4] (周文, 童良怀, 夏尚等. 环己烷氧化管道爆燃事故原因技术分析 [J]. 化工设备与管道, 2018, 55(3): 69)
[5] Chen F Q, Fu D M, Zhou K, et al. Development and application of corrosion resistance probe monitoring technology [J]. Corros. Sci. Prot. Technol., 2017, 29: 669
[5] (陈凤琴, 付冬梅, 周珂等. 电阻探针腐蚀监测技术的发展与应用 [J]. 腐蚀科学与防护技术, 2017, 29: 669)
[6] Xu Y Z, Huang Y, Wang X N, et al. Experimental study on pipeline internal corrosion based on a new kind of electrical resistance sensor [J]. Sens. Actuat., 2016, 224B: 37
[7] Yang D, Chen J S, Han Q, et al. Preparation of hot-dip Zn-Al-Mg alloy coating on steel wire and its electrochemical corrosion behavior [J]. Mater. Prot., 2008, 41(11): 1
[7] (杨栋, 陈建设, 韩庆等. 钢丝热镀Zn-Al-Mg合金层及其电化学腐蚀行为 [J]. 材料保护, 2008, 41(11): 1)
[8] Zhao H L, Su X D, Qin Q D. Microstructure and corrosion behavior of friction stir welding seam of 6063 aluminum alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 1140
[8] (赵宏龙, 苏向东, 秦庆东. 6063铝合金搅拌摩擦焊焊缝组织特征与腐蚀行为研究 [J]. 特种铸造及有色合金, 2018, 38: 1140)
[9] Song S Z, Yin L H, Wu J, et al. Corrosion electrochemistry of brass tube in simulated circlating cooling system [J]. J. Chem. Ind. Eng. (China), 2005, 25: 121
[9] (宋诗哲, 尹立辉, 武杰等. 模拟循环冷却系统黄铜管的腐蚀电化学 [J]. 化工学报, 2005, 25: 121)
[10] Ikeuba A I, Zhang B, Wang J Q, et al. SVET and SIET study of galvanic corrosion of Al/MgZn2 in aqueous solutions at different pH [J]. J. Electrochem. Soc., 2018, 165: C180
[11] Xia F, Liao K X, Jing H. Effect of chloride ions on localized corrosion behaviors of scratch-defected coating in gas pipeline wall [J]. Mater. Prot., 2017, 50(9): 36
[11] (夏凤, 廖柯熹, 景红. Cl-对天然气管道内涂层破损处局部腐蚀的影响 [J]. 材料保护, 2017, 50(9): 36)
[12] Feng H W, Singh A, Wu Y P, et al. SECM/SKP and SVET studies on mitigation of N80 steel corrosion by some polymers [J]. New J. Chem., 2018, 42: 11404
[13] Yang W H, Hu R G, Ye C Q, et al. Corrosion behaviors of 316 stainless steel weldment studied by array reference electrodes [J]. Electrochemistry, 2011, 17: 373
[13] (杨旺火, 胡融刚, 叶陈清等. 阵列参比电极法研究316不锈钢焊缝腐蚀行为 [J]. 电化学, 2011, 17: 373)
[14] Liu J Q, Wu J Q. Development of machine vision system and its application [J]. Mechan. Eng. Automat., 2010, (1): 215
[14] (刘金桥, 吴金强. 机器视觉系统发展及其应用 [J]. 机械工程与自动化, 2010, (1): 215)
[15] Kazuya Y. Translated by Chen R T, Peng M G. The Basis and Applications of CCD/CMOS Image Sensors [M]. Peking: Science Press, 2011: 3
[15] (Kazuya著. 陈榕庭, 彭美桂译. CCD/CMOS图像传感器基础与应用 [M]. 北京: 科学出版社, 2011: 3)
[16] Zhang S H, Shibata T, Haruna T. Inhibition effect of metal cations to intergranular stress corrosion cracking of sensitized Type 304 stainless steel [J]. Corros. Sci., 2005, 47: 1049
[17] Kamaya M, Haruna T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel [J]. Corros. Sci., 2007, 49: 3303
[18] Kovac J, Alaux C, Marrow T J, et al. Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel [J]. Corros. Sci., 2010, 52: 2015
[19] Bolivar J, Frégonèse M, Réthoré J, et al. Evaluation of multiple stress corrosion crack interactions by in-situ digital image correlation [J]. Corros. Sci., 2017, 128: 120
[20] Wang M F, Li X G, Du N, et al. Direct evidence of initial pitting corrosion [J]. Electrochem. Commun., 2008, 10: 1000
[21] Poon T C, Liu J P. Introduction to Modern Digital Holography: with MATLAB [M]. Cambridge: Cambridge University Press, 2014: 118
[22] Takaki Y, Matsumoto Y, Nakajima T. Color image generation for screen-scanning holographic display [J]. Opt. Express, 2015, 23: 26986
pmid: 26480360
[23] Yuan B Y, Li Z H, Tong S, et al. In situ monitoring of pitting corrosion on stainless steel with digital holographic surface imaging [J]. J. Electrochem. Soc., 2019, 166: C3039
[24] Klages P E, Rotermund M K, Rotermund H H. Simultaneous holographic, ellipsometric, and optical imaging of pitting corrosion on SS 316LVM stainless steel [J]. Corros. Sci., 2012, 65: 128
doi: 10.1016/j.corsci.2012.08.023
[25] Asgari P, Pourvais Y, Abdollahi P, et al. Digital holographic microscopy as a new technique for quantitative measurement of microstructural corrosion in austenitic stainless steel [J]. Mater. Des., 2017, 125: 109
doi: 10.1016/j.matdes.2017.03.085
[26] Baruchel J, Buffiere J Y, Maire E, et al. X-ray Tomography in Material Science [M]. Paris: Hermes Science Publications, 2000
[27] Maire E, Withers P J. Quantitative X-ray tomography [J]. Int. Mater. Rev., 2014, 59: 1
[28] Lu Y, Chiu Y L, Jones I P. Three-dimensional analysis of the microstructure and bio-corrosion of Mg-Zn and Mg-Zn-Ca alloys [J]. Mater. Charact., 2016, 112: 113
[29] Bradley R S, Liu Y, Burnett T L, et al. Time‐lapse lab‐based X‐ray nano‐CT study of corrosion damage [J]. J. Microsc., 2017, 267: 98
doi: 10.1111/jmi.12551 pmid: 28419456
[30] Shi J J, Ming J, Zhang Y M, et al. Corrosion products and corrosion-induced cracks of low-alloy steel and low-carbon steel in concrete [J]. Cem. Concr. Compos., 2018, 88: 121
doi: 10.1016/j.cemconcomp.2018.02.002
[31] Almuaili F A, McDonald S A, Withers P J, et al. Application of a quasi in situ experimental approach to estimate 3-D pitting corrosion kinetics in stainless steel [J]. J. Electrochem. Soc., 2016, 163: C745
[32] Almuaili F A, McDonald S A, Withers P J, et al. Strain-induced reactivation of corrosion pits in austenitic stainless steel [J]. Corros. Sci., 2017, 125: 12
[33] Örnek C, Léonard F, McDonald S A, et al. Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires [J]. npj Mater. Degradat., 2018, 2: 10
[34] Sun Y Y. Optical Microscopic Analysis [M]. 2nd Ed. Beijing: Tsinghua University Press, 2003
[34] (孙业英. 光学显微分析 [M]. 第2版. 北京: 清华大学出版社, 2003)
[35] Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy [J]. Corros. Sci., 2000, 42: 1433
doi: 10.1016/S0010-938X(99)00143-2
[36] Wang Y F, Cheng G X, Li Y. Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.%NaCl solutions using in-situ and 3-D measuring microscope [J]. Corros. Sci., 2016, 111: 508
[37] Zhao Z J, Frankel G S. On the first breakdown in AA7075-T6 [J]. Corros. Sci., 2007, 49: 3064
doi: 10.1016/j.corsci.2007.02.001
[38] Green B A, Steward R V, Kim I, et al. Insitu observation of pitting corrosion of the Zr50Cu40Al10 bulk metallic glass [J]. Intermetallics, 2009, 17: 568
[39] Li Y. Novel electrochemical techniques with time/sPatial resolution for corrosion investigations-from instrumental methods to applications [D]. Xiamen: Xiamen University, 2009
[39] (李彦. 金属腐蚀研究中具有时间—空间分辨的电化学技术-从仪器方法到实际应用 [D]. 厦门: 厦门大学, 2009)
[40] Xiao H Q. The design and experimental research on slow strain rate stress corrosion in-situ testing instrument [D]. Changchun: Jilin University, 2017
[40] (肖慧琼. 慢应变速率应力腐蚀原位测试装置设计与试验研究 [D]. 长春: 吉林大学, 2017)
[41] Zhu Y, Wang Y P, Chen W X. Formation and Microscopic Analysis of SEM Images [M]. Beijing: Beijing University Press, 1991
[41] (朱宜, 汪裕苹, 陈文雄. 扫描电镜图像的形成处理和显微分析 [M]. 北京: 北京大学出版社, 1991)
[42] Zhu L. SEM and its application in material science [J]. J. Jilin Instit. Chem. Technol., 2007, 24(2): 81
[42] (朱琳. 扫描电子显微镜及其在材料科学中的应用 [J]. 吉林化工学院学报, 2007, 24(2): 81)
[43] Zou Y, Pan C X, Fu Q, et al. Insitu observations for corrosion process at fusion boundary of Cr5Mo dissimilar steel welded joints in H2S containing solution [J]. Acta Metall. Sin., 2005, 41: 421
[43] (邹杨, 潘春旭, 傅强等. Cr5Mo异种钢焊接熔合区H2S腐蚀过程的“原位”观察 [J]. 金属学报, 2005, 41: 421)
[44] Li X D, Wang X S, Ren H H, et al. Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy [J]. Corros. Sci., 2012, 55: 26
doi: 10.1016/j.corsci.2011.09.025
[45] Wang Y F, Cheng G G, Wu W, et al. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions [J]. Appl. Surf. Sci., 2015, 349: 746
doi: 10.1016/j.apsusc.2015.05.053
[46] Wang X S, Fan J H. SEM online investigation of fatigue crack initiation and propagation in cast magnesium alloy [J]. J. Mater. Sci., 2004, 39: 2617
[47] Li X D, Mu Z T, Liu Z G. SEM in situ study on pre-corrosion and fatigue cracking behavior of LY12CZ aluminum alloy [J]. Key Eng. Mater., 2013, 525/526: 81
[48] Liu Z. Research on stress corrosion behavior of 2A14 aluminum alloy welded joints [D]. Harbin: Harbin Institute of Technology, 2016
[48] (刘震. 2A14铝合金焊接接头应力腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[49] Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Phys. Rev. Lett., 1986, 56: 930
doi: 10.1103/PhysRevLett.56.930 pmid: 10033323
[50] Zhu J, Sun R G. Introduction to atomic force microscope and its manipulation [J]. Life Sci. Instrum., 2005, 3(1): 22
[50] (朱杰, 孙润广. 原子力显微镜的基本原理及其方法学研究 [J]. 生命科学仪器, 2005, 3(1): 22)
[51] Liang S, Qiao L J, Chu W Y. AFM Study on stress corrosion promoting local plastic deformation [J]. Chin. Sci. Bull., 2002, 34(3): 178
[51] (梁松, 乔利杰, 褚武扬. 应力腐蚀促进局部塑性变形的原子力显微镜研究 [J]. 科学通报, 2002, 34(3): 178)
[52] Qu J E, Guo X P, Wang H R, et al. Corrosion behavior of pure aluminum in FeCl3 solution [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1460
[53] Izquierdo J, Eifert A, Souto R M, et al. Simultaneous pit generation and visualization of pit topography using combined atomic force-scanning electrochemical microscopy [J]. Electrochem. Commun., 2015, 51: 15
[54] Martin F A, Bataillon C, Cousty J. Insitu AFM detection of pit onset location on a 304L stainless steel [J]. Corros. Sci., 2008, 50: 84
doi: 10.1016/j.corsci.2007.06.023
[55] Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
doi: 10.1016/j.apsusc.2018.01.047
[56] Lu L. The study of corrosion behavior of 35CrMo steel in CO2 saturated solution [D]. Chengdu: Southwest Petroleum University, 2011
[56] (鲁亮. 35CrMo钢在CO2饱和溶液中的腐蚀行为研究 [D]. 成都: 西南石油大学, 2011)
[57] Payton O D, Picco L, Scott T B. High-speed atomic force microscopy for materials science [J]. Int. Mater. Rev., 2016, 61: 473
doi: 10.1080/09506608.2016.1156301
[58] Moore S, Burrows R, Picco L, et al. A study of dynamic nanoscale corrosion initiation events by HS-AFM [J]. Faraday Discuss., 2018, 210: 409
pmid: 29974088
[59] Reimer L. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis [M]. Berlin: Springer Verlag, 2013, 36
[60] Wang Z L. New developments in transmission electron microscopy for nanotechnology [J]. Adv. Mater., 2003, 15: 1497
doi: 10.1002/(ISSN)1521-4095
[61] San X Y, Zhang B, Wu B, et al. Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM [J]. Corros. Sci., 2018, 130: 143
doi: 10.1016/j.corsci.2017.11.001
[62] Wan Y, Tan J, Zhu S T, et al. Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM [J]. Corros. Sci., 2019, 152: 226
doi: 10.1016/j.corsci.2019.03.017
[63] Song Z W, Xie Z H. A literature review of in situ transmission electron microscopy technique in corrosion studies [J]. Micron, 2018, 112: 69
pmid: 29929172
[64] Schilling S, Janssen A, Zaluzec N J, et al. Practical aspects of electrochemical corrosion measurements during in situ analytical transmission electron microscopy (TEM) of austenitic stainless steel in aqueous media [J]. Microsc. Microanal., 2017, 23: 741
doi: 10.1017/S1431927617012314 pmid: 28784199
[65] Zhang B, Ma X L. A review-pitting corrosion initiation investigated by TEM [J]. J. Mater. Sci. Technol., 2019, 35: 1455
doi: 10.1016/j.jmst.2019.01.013
[66] Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel [J]. Corros. Sci., 2015, 100: 295
doi: 10.1016/j.corsci.2015.08.009
[67] Zhang Y, Gore P, Rong W, et al. Quasi-in-situ STEM-EDS insight into the role of Ag in the corrosion behaviour of Mg-Gd-Zr alloys [J]. Corros. Sci., 2018, 136: 106
doi: 10.1016/j.corsci.2018.02.058
[1] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[2] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[3] 陈亚林, 张伟, 王伟, 王佳, 王琦, 蔡光旭. WBE技术研究水线区Q235碳钢腐蚀[J]. 中国腐蚀与防护学报, 2014, 34(5): 451-458.
[4] 唐子龙, 李辉, 李超. Na2SO4液膜下碳钢早期腐蚀速率及其环境因素的关联性[J]. 中国腐蚀与防护学报, 2010, 30(3): 217-221.
[5] 唐子龙;李超;李辉. NaCl液膜下碳钢腐蚀速率及其与环境因素的关联性[J]. 中国腐蚀与防护学报, 2010, 30(1): 67-71.
[6] 王永红; 鹿中晖; 李英志; 王永红; 鹿中晖; 李英志 . 电缆、光缆对地绝缘电阻原位测试研究[J]. 中国腐蚀与防护学报, 2007, 27(1): 14-16 .
[7] 董超芳; 徐景; 李晓刚 . 用高温显微镜原位观察钢中氢腐蚀裂纹愈合过程[J]. 中国腐蚀与防护学报, 2003, 23(3): 179-182 .
[8] 刘树勋; 刘宪民; 李培杰; 吴振宁 . 高Co热作钢在AZ91D镁合金液中腐蚀行为[J]. 中国腐蚀与防护学报, 2003, 23(2): 120-123 .
[9] 孙成; 韩恩厚; 李洪锡 . 原位测试研究土壤环境因素对碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2002, 22(4): 207-210 .
[10] 张鉴清; 张昭; 王建明 . 电化学噪声的分析与应用Ⅱ.电化学噪声的应用[J]. 中国腐蚀与防护学报, 2002, 22(4): 241-248 .
[11] 李瑛; 曹楚南; 林海潮 . 非晶合金活性溶解行为与其表面结构特征的STM原位研究[J]. 中国腐蚀与防护学报, 1999, 19(3): 129-136 .
[12] 林昌健. 多重内反射红外光谱原位研究聚合物/金属界面水的动态行为[J]. 中国腐蚀与防护学报, 1996, 16(4): 241-246.
[13] 宋光铃. 膜覆盖电极电化学浅析[J]. 中国腐蚀与防护学报, 1996, 16(3): 211-217.
[14] 马士德;谢肖勃;黄修明;李言涛;尹建德;彭树杰. 藤壶附着对海水中金属腐蚀的影响[J]. 中国腐蚀与防护学报, 1995, 15(1): 74-77.