Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 110-116    DOI: 10.11902/1005.4537.2020.039
  研究报告 本期目录 | 过刊浏览 |
Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析
唐荣茂1, 朱亦晨1, 刘光明1(), 刘永强1, 刘欣2, 裴锋2
1.南昌航空大学材料科学与工程学院 南昌 330063
2.国网江西省电力有限公司电力科学研究院 南昌 330096
Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments
TANG Rongmao1, ZHU Yichen1, LIU Guangming1(), LIU Yongqiang1, LIU Xin2, PEI Feng2
1.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
全文: PDF(2085 KB)   HTML
摘要: 

采用动电位扫描和电化学阻抗谱 (EIS) 技术,研究了Q235钢/导电混凝土在盐碱土、黄棕壤、红壤中的腐蚀行为,分析了土壤环境因素对腐蚀过程的影响规律,并基于灰色关联度理论计算了土壤中各离子对导电混凝土中Q235钢腐蚀过程的影响权重。结果表明,加速腐蚀45 d后,Q235钢/导电混凝土表面出现孔洞、边缘出现细微裂纹。Q235钢/导电混凝土在3种典型土壤环境中腐蚀速率按土壤类型由小到大排序为:盐碱土<黄棕壤<红壤。灰色关联度计算结果表明,Q235钢/导电混凝土在土壤中腐蚀时,土壤中各离子影响权重排序为:pH>[SO42-]>[Ca2+]>[Cl-]>[HCO3-]>[Mg2+]>[Fe3+]。随着土壤环境pH的降低,导电混凝土劣化程度增大,腐蚀速率上升。土壤中的H+、SO42-会直接与导电混凝土组分发生反应,导致混凝土劣化,其影响权重最大。而Ca2+需通过扩散的方式进入导电混凝土孔隙液,以析出相应的氧化物或者碳酸盐沉积的方式提供物理防护作用,其影响权重略低。其中,由于Cl-对Q235钢腐蚀的促进过程受到混凝土层及双电层隔绝作用的抑制,其影响权重较低。

关键词 Q235钢/导电混凝土土壤腐蚀电化学测试灰色关联度    
Abstract

The corrosion behavior of Q235 steel/conducting concrete in saline-alkali soil, yellow-brown soil, and red soil respectively was studied by means of potentiostatic scanning and electrochemical impedance spectroscopy (EIS) techniques, so that to reveal the influence of soil environmental factors on the corrosion process. Based on the grey correlation theory, the influence weight of each ion in soils on the corrosion process of Q235 steel in conductive concrete was calculated. The results show that after 45 d of accelerated corrosion, holes and fine cracks appeared on the surface of Q235 steel/conducting concrete. The corrosion rate of Q235 steel/conducting concrete in three typical soil environments may be ranked from small to large according to soil type: saline-alkali soil, yellow-brown soil, and red soil. The calculation results of the grey correlation degree show that when the Q235 steel/conducting concrete is corroded in the soil, the weighting of soil environmental factors may be ranked as follows: pH>[SO42-]>[Ca2+]>[Cl-]>[HCO3-]>[Mg2+]>[Fe3+]. As the pH of the soil environment decreases, the degradation degree of conductive concrete increases, while the corrosion rate increases. H+ and SO42- in the soil will directly react with conductive concrete components, resulting in concrete degradation, which has the greatest impact weight. Ca2+ can migrate inward to the conductive concrete pore fluid, therewith leading the precipitation of relevant oxides or carbonates there, which act as physical protective means, hence the impact weight of Ca2+ is slightly lower. The influence of Cl- on the corrosion of Q235 steel is inhibited by the insulation effect of the concrete layer and the electric double layer, so the influence weight is also lower.

Key wordsQ235 steel/conducting concrete    soil corrosion    electrochemical test    grey correlation
收稿日期: 2020-03-10     
ZTFLH:  TG147.2  
基金资助:国家自然科学基金(51961028);国家电网公司科技项目(521820170024)
通讯作者: 刘光明     E-mail: gemliu@126.com
Corresponding author: LIU Guangming     E-mail: gemliu@126.com
作者简介: 唐荣茂,男,1995年生,硕士生

引用本文:

唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
Rongmao TANG, Yichen ZHU, Guangming LIU, Yongqiang LIU, Xin LIU, Feng PEI. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 110-116.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.039      或      https://www.jcscp.org/CN/Y2021/V41/I1/110

SoilCa2+ / mmol·L-1Mg2+ / mmol·L-1Fe3+ / mmol·L-1Cl- / mmol·L-1SO42- / mmol·L-1HCO3- / mmol·L-1pH
Saline-alkali soil0.2501.4351.31250.71000.31007.698.02
Yellow brown soil0.12160.13170.12120.17600.41001.267.84
Red soil0.06150.06460.00860.10000.33800.424.97
表1  3种典型土壤的理化性质
Raw material consumption / kg·m-3Carbon nanotubes / %PAN-based carbon fiber / %Water reducing agent / %Defoamer%
CementCoal ashMineral powderWater
28033.650.41400.20.310.1
表2  导电混凝土的实验配合比
图1  实验装置示意图
图2  导电混凝土腐蚀前后的XRD谱
图3  试样在3种典型土壤中腐蚀前后的宏观腐蚀形貌
图4  试样在3种典型土壤中腐蚀45 d后的动电位极化曲线
SampleIcorr / A·cm-2Ecorr / Vβa / V·dec-1βc / V·dec-1
Saline-alkali soil3.770×10-7-0.8692.0477.928
Yellow brown soil3.819×10-7-0.8463.9036.507
Red soil2.752×10-6-0.7424.5155.550
表3  试样在3种典型土壤中腐蚀45 d后的极化曲线拟合参数
图5  试样在3种典型土壤中腐蚀45 d后的电化学阻抗谱
图6  试样在3种典型土壤中的等效电路模型
TimedRs / ×102Ω·cm2Rc / ×102Ω·cm2Cc / ×10-9F·cm-2nc

Rf / ×102

Ω·cm2

Qf / ×10-6

F·cm-2

nf

Rct / ×104

Ω·cm2

Qdl / ×10-6

F·cm-2

ndl

W / ×10-5

Ω·cm2

Saline-alkali soil1.843.752.560.3821.87.280.4810.826.80.596.45
Yellow brown soil2.262.383.480.332.769.240.413.0334.30.633.37
Red soil3.551.646.670.294.8726.60.381.555.460.7712.00
表4  试样在3种典型土壤中腐蚀45 d后的EIS拟合参数
SequenceX0X1X2X3X4X5X6X7
symbolIcorr / A·cm-2Ca2+ / mmol·L-1Mg2+ / mmol·L-1Fe3+ / mmol·L-1Cl- / mmol·L-1SO42- / mmol·L-1HCO3- / mmol·L-1pH
Saline-alkali soil3.770×10-70.25001.43501.31250.71000.31007.69008.02
Yellow brown soil3.819×10-70.12160.13170.12120.17600.41001.26007.84
Red soil2.752×10-60.06150.06460.00860.10000.33800.42004.97
表5  Q235钢腐蚀电流密度和土壤环境因素相关序列
1 Hu Y C, Ruan J J, Gong R H, et al. Flexible graphite composite electrical grounding material and its application in tower grounding grid of power transmission system [J]. Power Syst. Technol., 2014, 38: 2851
1 胡元潮, 阮江军, 龚若涵等. 柔性石墨复合接地材料及其在输电线路杆塔接地网中的应用 [J]. 电网技术, 2014, 38: 2851
2 Hu R G. Electrochemical study on corrosion process of steel rebar/concrete system [D]. Xiamen: Xiamen University, 2004
2 胡融刚. 钢筋/混凝土体系腐蚀过程的电化学研究 [D]. 厦门: 厦门大学, 2004
3 Zhu Y C, Liu G M, Liu X, et al. Investigation on interrelation of field corrosion test and accelerated corrosion test of grounding materials in red soil environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 550
3 朱亦晨, 刘光明, 刘欣等. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 550
4 Liu X, Zhu Y C, Pei F, et al. Galvanic corrosion behavior of Q235 steel-red copper in acid red soil of different temperatures [J]. Surf. Technol., 2018, 47(9): 157
4 刘欣, 朱亦晨, 裴锋等. Q235钢-紫铜在不同温度酸性红壤中的电偶腐蚀行为 [J]. 表面技术, 2018, 47(9): 157
5 Ke Y, Feng C, Zhou Q, et al. Analysis of the influence of concrete pore structure on strength and durability based on grey relation theory [J]. Concrete, 2019, (5): 42
5 柯杨, 冯诚, 周琴等. 基于灰关联理论的混凝土孔结构对强度和耐久性的影响分析 [J]. 混凝土, 2019, (5): 42
6 Jiang Y M, Wu M, Chen X, et al. Grey relational analysis for soil corrosion of a buried pipeline [J]. Corros. Prot., 2011, 32: 564
6 姜永明, 吴明, 陈旭等. 某油田埋地管道土壤腐蚀的灰色关联分析 [J]. 腐蚀与防护, 2011, 32: 564
7 Fu C Y, Zheng J S, Zhao J M, et al. Application of grey relational analysis for corrosion failure of oil tubes [J]. Corros. Sci., 2001, 43: 881
8 Wang H T, Han E-H, Ke W. Gray model and gray relation analysis for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 278
8 王海涛, 韩恩厚, 柯伟. 碳钢、低合金钢大气腐蚀的灰色模型预测及灰色关联分析 [J]. 腐蚀科学与防护技术, 2006, 18: 278
9 Zha F L, He T X, Feng B, et al. Grey correlation analysis of grounding grid materials corroded in soil extract solutions [J]. Corros. Prot., 2014, 35: 1212
9 查方林, 何铁祥, 冯兵等. 接地网材料在土壤浸出液中腐蚀的灰色关联度分析 [J]. 腐蚀与防护, 2014, 35: 1212
10 Wang H, Li J P, Li L, et al. Service life of underground concrete pipeline with original incomplete cracks in chlorinated soils: Theoretical prediction [J]. Construct. Build. Mater., 2018, 188: 1166
11 Ma X X. The classification of main soil corrosion to concrete materials in our country [J]. Build. Sci., 2003, 19(6): 56
11 马孝轩. 我国主要类型土壤对混凝土材料腐蚀性规律的研究 [J]. 建筑科学, 2003, 19(6): 56
12 Wang S X, Du N, Liu D X, et al. Corrosion kinetics and the relevance analysis for X80 steel in a simulated acidic soil solution and outdoor red soil [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 18
12 王帅星, 杜楠, 刘道新等. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析 [J]. 中国腐蚀与防护学报, 2019, 39: 18
13 Sagoe-crentsil K K, Glasser F P, Irvine J T S. Electrochemical characteristics of reinforced concrete corrosion as determined by impedance spectroscopy [J]. Br. Corros. J., 1992, 27: 113
14 Vedalakshmi R, Palaniswamy N. Analysis of the electrochemical phenomenon at the rebar-concrete interface using the electrochemical impedance spectroscopic technique [J]. Mag. Concrete Res., 2010, 62: 177
15 Wang S, Luo H, Li Z Z, et al. Corrosion behavior of three kinds of typical grounded metal in simulated solution of Shanxi soil [J]. Mater. Prot., 2012, 45(2): 70
15 王森, 骆鸿, 李志忠等. 陕西土壤模拟液中3种典型接地金属材料的腐蚀行为 [J]. 材料保护, 2012, 45(2): 70
16 Qiu L F. Experimental study on corrosion process of reinforced concrete in sulfate-chloride environment [D]. Nanjing: Nanjing University of Science and Technology, 2017
16 邱林峰. 硫酸盐—氯盐环境下钢筋混凝土腐蚀过程的实验研究 [D]. 南京: 南京理工大学, 2017
17 Shi J J, Sun W. Recent research on steel corrosion in concrete [J]. J. Chin. Ceram. Soc., 2010, 38: 1753
17 施锦杰, 孙伟. 混凝土中钢筋锈蚀研究现状与热点问题分析 [J]. 硅酸盐学报, 2010, 38: 1753
18 Shi J J, Sun W. Models for corrosion rate of steel in concrete—A short review [J]. J. Chin. Ceram. Soc., 2012, 40: 620
18 施锦杰, 孙伟. 混凝土中钢筋腐蚀速率模型研究进展 [J]. 硅酸盐学报, 2012, 40: 620
19 Wang D J. Analysis on influence of acid rain pollution on durability of reinforced concrete composite beams [J]. Environ. Sci. Manage., 2019, 44(10): 54
19 王德俊. 酸雨污染对钢筋混凝土组合梁结构耐久性的影响研究 [J]. 环境科学与管理, 2019, 44(10): 54
20 Sánchez-Moreno M, Takenouti H, García-Jareño J J, et al. A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media [J]. Electrochim. Acta, 2009, 54: 7222
21 Dong C F, Li X G, Wu J W, et al. Review in experimentation and data processing of soil corrosion [J]. Corros. Sci. Prot. Technol., 2003, 15: 154
21 董超芳, 李晓刚, 武俊伟等. 土壤腐蚀的实验研究与数据处理 [J]. 腐蚀科学与防护技术, 2003, 15: 154
22 Mundra S, Criado M, Bernal S A, et al. Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes [J]. Cem. Concr. Res., 2017, 100: 385
[1] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[2] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[3] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[4] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[5] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[6] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[7] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[8] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[10] 毛成亮,肖葵,董超芳,吴俊升,颜利丹,蒋立. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 101-109.
[11] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[12] 黄涛,陈小平,王向东,米丰毅,刘芮,李向阳. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[13] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[14] 张丹丹,王振尧,赵春英,曹公望. Q345钢在模拟酸性海洋气溶胶环境下的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 326-332.
[15] 王青, 马雪梅, 石海燕, 原珊, 郭建峰, 梁栋, 胡志勇. 苯并咪唑衍生物在1 mol/L HCl溶液中对45#碳钢缓蚀行为的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 49-54.