Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 71-79    DOI: 10.11902/1005.4537.2019.270
  研究报告 本期目录 | 过刊浏览 |
TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究
史昆玉, 吴伟进, 张毅, 万毅, 于传浩()
武汉工程大学机电工程学院 武汉 430205
Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution
SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao()
School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
全文: PDF(4791 KB)   HTML
摘要: 

利用双阴极等离子溅射技术在Ti-6Al-4V (TC4) 合金表面沉积Nb涂层,采用XRD、XPS和SEM研究涂层的组成及横截面形貌,并采用电化学工作站对涂层与基体的电化学性能及其钝化膜半导体特性进行研究。电化学测试均在模拟人体体液环境的Ringer's溶液中37 ℃下进行。结果表明,Nb涂层厚度约为18 μm,无孔洞、裂纹等缺陷,在 (200) 晶面呈现择优取向。涂层表面钝化膜成分主要为Nb2O5。相比TC4基体,涂层具有更高的开路电位EOCP、腐蚀电位Ecorr和更低的腐蚀电流密度Icorr;涂层与基体合金试样均表现出单一容抗弧,但涂层具有更高的阻抗和较低的有效电容值;两种试样的钝化膜均表现出n型半导体特性,在不同的成膜电位Ef下,Nb涂层的钝化膜具有更低的平带电位Efb,施主密度Nd和扩散系数D0

关键词 Ti-6Al-4V合金Nb涂层耐腐蚀性能钝化膜半导体特性    
Abstract

To improve the corrosion resistance of Ti-alloy applied to human implants, Nb coating was deposited on the surface of Ti-6Al-4V (TC4) alloy by double cathode plasma sputtering technique. The composition and the cross-sectional morphology of the coating were characterized by XRD, XPS and SEM. The electrochemical properties of the coating and the semiconductor properties of the passivation film for the coating and the substrate were studied in Ringer's simulated body solution at 37 ℃ by electrochemical workstation. The results show that the Nb coating exhibits a preferred orientation on the (200) crystal plane, and the coating thickness is about 18 μm without defects such as holes and cracks. The passive film on the Nb coating is mainly Nb2O5. Comparing with the TC4 substrate, the coating has higher open circuit potential (EOCP), corrosion potential (Ecorr) and lower corrosion current density (Icorr). Both of the TC4 alloys with and without Nb coating exhibit a single capacitance loop, however, the coated alloy exhibits higher impedance and lower effective capacitance rather than the substrate. The passivation films of two samples exhibit n-type semiconductor characteristics. By different formation potential (Ef), the flat band potential (Efb), the donor density (Nd) and diffusion coefficient (D0) of the passivation film on the coating are always lower than that on the bare TC4 alloy.

Key wordsTi-6Al-4V alloy    Nb coating    corrosion resistance    passive film    semiconductor property
收稿日期: 2019-12-19     
ZTFLH:  TG174.445  
基金资助:武汉工程大学研究生教育创新基金项目(CX2019242)
通讯作者: 于传浩     E-mail: yuchuanhaowh@126.com
Corresponding author: YU Chuanhao     E-mail: yuchuanhaowh@126.com
作者简介: 史昆玉,女,1972年生,博士

引用本文:

史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
Kunyu SHI, Weijin WU, Yi ZHANG, Yi WAN, Chuanhao YU. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 71-79.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.270      或      https://www.jcscp.org/CN/Y2021/V41/I1/71

图1  Nb涂层的X射线衍射图谱
图2  不同分辨率下Nb涂层的横截面形貌像
图3  Nb涂层与TC4基体在37 ℃的Ringer's溶液中的开路电位-时间曲线
图4  Nb涂层与TC4基体在37 ℃的Ringer's溶液中的动电位极化曲线
SampleEcorr / VIcorr / A·cm-2βa / V·dec-1-βc / V·dec-1Rp / 106 Ω·cm2Ip / A·cm-2
Ti-6Al-4V-0.6363.372×10-8228.154193.3491.0331.832×10-7
Nb coating-0.0437.865×10-9277.778130.3104.3944.030×10-8
表1  Nb涂层与TC4基体在37 ℃的Ringer's溶液中的极化参数
图5  Nb涂层与TC4基体在Ringer's溶液中的阻抗谱
图6  阻抗谱拟合电路图Rs(Q1(R1(Q2R2)))
SampleRs / Ω·cm2Q1 / Ω-1·cm-2·snn1R1 / Ω·cm2Q2 / Ω-1·cm-2·snn2R2 / Ω·cm2C2τχ2
Ti-6Al-4V46.321.27×10-50.726194.565.39×10-60.8494.29×1051.23×10-60.531.11×10-3
Nb coating48.956.38×10-60.796362.723.51×10-70.9744.57×1072.60×10-71.193.95×10-4
表2  Nb涂层与TC4基体在Ringer's溶液中的阻抗谱拟合数据
图7  Nb涂层在37 ℃的Ringer's溶液中以1.0 V恒电位极化1 h所形成钝化膜的XPS测量谱
图8  Nb涂层与TC4基体在37 ℃的Ringer's溶液中的Mott-Schottky测试结果
SampleNb coatingTi-6Al-4V
0.4 VEfb / V-1.540-1.122
Nd / 1016 cm-31.561405.933
0.6 VEfb / V-1.462-1.130
Nd / 1016 cm-31.337311.725
0.8 VEfb / V-1.406-1.116
Nd / 1016 cm-31.205267.045
1.0 VEfb / V-1.431-1.068
Nd / 1016 cm-31.092256.741
ω2 / cm-38.377×10152.440×1018
Iss / A·cm-28.32×10-86.03×10-7
εL / V ·cm-11.707×1082.551×106
D0 / cm2·s-12.430×10-154.045×10-15
表3  Nb涂层与TC4基体的钝化膜在37 ℃ Ringer's溶液中的电容测量和计算结果
图9  涂层与基体的施主密度与成膜电位的关系曲线
图10  Nb涂层与TC4的稳态钝化膜厚度和电容与成膜电位的关系曲线
1 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review [J]. Prog. Mater. Sci., 2009, 54: 397
2 Yan H M, Liu Y, Pang S J, et al. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions [J]. Rare Met., 2018, 37: 831
3 Wang H J, Wang J, Peng X, et al. Corrosion behavior of three titanium alloys in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 75
3 王海杰, 王佳, 彭欣等. 钛合金在3.5%NaCl溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 75
4 Liu L L, Xu J, Lu X L, et al. Electrochemical corrosion behavior of nanocrystalline β-Ta coating for biomedical applications [J]. ACS Biomater. Sci. Eng., 2016, 2: 579
5 Jin X D, Yang X K, Wei F R, et al. Research progress in surface modification materials and technologies of medical titanium and titanium alloys [J]. World Nonferrous Met., 2018, (07): 265
5 金旭丹, 杨晓康, 魏芬绒等. 医用钛及钛合金表面改性材料与技术研究进展 [J]. 世界有色金属, 2018, (07): 265
6 He L. Study on electrochemical properties of Ti-13Nb-13Zr alloy for implants [J]. Titanium Ind. Prog., 2014, 31(3): 43
6 何蕾. 植入物用Ti-13Nb-13Zr合金电化学性能的研究 [J]. 钛工业进展, 2014, 31(3): 43
7 Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
7 于振涛, 余森, 程军等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
8 Pauline S A, Rajendran N. Corrosion behaviour and biocompatibility of nanoporous niobium incorporated titanium oxide coating for orthopaedic applications [J]. Ceram. Int., 2017, 43: 1731
9 Zhang S, Cheng X, Yao Y, et al. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior [J]. Mater. Sci. Eng., 2015, C53: 50
10 Jones M I, McColl I R, Grant D M. Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering [J]. Surf. Coat. Technol., 2000, 132: 143
11 Su C Y, Lu C T, Hsiao W T, et al. Evaluation of the microstructural and photocatalytic properties of aluminum-doped zinc oxide coatings deposited by plasma spraying [J]. Thin Solid Films, 2013, 544: 170
12 Shukla A K, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4 Al-29Nb alloys in simulated human body conditions [J]. Intermetallics, 2005, 13: 631
13 Xu J, Bao X K, Jiang S Y. In vitro corrosion resistance of Ta2N nanocrystalline coating in simulated body fluids [J]. Acta Metall. Sin., 2018, 54: 443
13 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究 [J]. 金属学报, 2018, 54: 443
14 Yu Y J, Kim J G, Cho S H, et al. Plasma-polymerized toluene films for corrosion inhibition in microelectronic devices [J]. Surf. Coat. Technol., 2003, 162: 161
15 Mansfeld F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection [J]. Electrochim. Acta, 1990, 35: 1533
16 Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
17 Xu J, Liu L L, Lu X L, et al. Effect of carbon doping on electrochemical behaviour of nanocrystalline Ti5Si3 film in NaCl solution [J]. Electrochem. Commun., 2011, 13: 102
18 Xu J, Cheng J, Jiang S Y, et al. The influence of Ti additions on the mechanical and electrochemical behavior of β-Ta5Si3 nanocrystalline coating [J]. Appl. Surf. Sci., 2017, 419: 901
19 Pan T J, Chen Y, Zhang B, et al. Corrosion behavior of niobium coated 304 stainless steel in acid solution [J]. Appl. Surf. Sci., 2016, 369: 320
20 Hu W, Xu J, Lu X L, et al. Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating [J]. Appl. Surf. Sci., 2016, 368: 177
21 Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem. Interf. Electrochem., 1984, 176: 275
22 Li Y, Zhang J L, Qian X Y, et al. Nanoporous niobium nitride (Nb2N) with enhanced electrocatalytic performance for hydrogen evolution [J]. Appl. Surf. Sci., 2018, 427: 884
23 PremKumar K P, Duraipandy N, Kiran M S, et al. Antibacterial effects, biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications [J]. Appl. Surf. Sci., 2018, 427: 1166
24 Jovic V D, Barsoum M W. Corrosion behavior and passive film characteristics formed on Ti, Ti3SiC2, and Ti4AlN3 in H2SO4 and HCl [J]. J. Electrochem. Soc., 2004, 151: B71
25 Al-Baradi A M, El-Nahass M M, Hassanien A M, et al. Influence of RF sputtering power on structural and optical properties of Nb2O5 thin films [J]. Optik, 2018, 168: 853
26 Ye W. Electrochemical corrosion behavior of 309 stainless steel Nano-crystalline coating in acidic solution [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 25
26 叶威. 309不锈钢纳米涂层在酸性溶液中的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2008, 28: 25
27 Li D G, Wang J D, Chen D R. Influence of potentiostatic aging, temperature and pH on the diffusivity of a point defect in the passive film on Nb in an HCl solution [J]. Electrochim. Acta, 2012, 60: 134
28 Di Quarto F, Piazza S, Sunseri C. Amorphous semiconductor-electrolyte junction. Impedance study on the a-Nb2O5-electrolyte junction [J]. Electrochim. Acta, 1990, 35: 99
29 Ries L A S, Da Cunha Belo M, Ferreira M G S, et al. Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution [J]. Corros. Sci., 2008, 50: 676
30 Sikora E, Sikora J, Macdonald D D. A new method for estimating the diffusivities of vacancies in passive films [J]. Electrochim. Acta, 1996, 41: 783
31 Kong D S, Wu J X. An electrochemical study on the anodic oxygen evolution on oxide film covered titanium [J]. J. Electrochem. Soc., 2008, 155: C32
[1] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[2] 宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[3] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[4] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[5] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[6] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[7] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[11] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[13] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[14] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[15] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.