|
|
质子交换膜燃料电池中TA1双极板的表面改性研究 |
韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才( ) |
大连海事大学材料工艺研究所 大连 116026 |
|
Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell |
HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai( ) |
Institute of Materials Technology, Dalian Maritime University, Dalian 116026, China |
引用本文:
韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
Yuetong HAN,
Pengchao ZHANG,
Jiefu SHI,
Ting LI,
Juncai SUN.
Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 125-130.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.009
或
https://www.jcscp.org/CN/Y2021/V41/I1/125
|
1 |
Zhao Q P, Mu Z X, Zhang B, et al. Research progress of bipolar plate material for proton exchange membrane fuel cell [J]. New Chem. Mater., 2019, 47(11): 52
|
1 |
赵秋萍, 牟志星, 张斌等. 质子交换膜燃料电池双极板材料研究进展 [J]. 化工新型材料, 2019, 47(11): 52
|
2 |
Cao C H, Liang C H, Huang N B. Electrochemical characteristic of stainless steel bipolar plates deposited with niobium [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 123
|
2 |
曹彩红, 梁成浩, 黄乃宝. 镀铌不锈钢双极板的电化学性能 [J]. 中国腐蚀与防护学报, 2013, 33: 123
|
3 |
Ghorbani M M, Taherian R, Bozorg M. Investigation on physical and electrochemical properties of TiN-coated Monel alloy used for bipolar plates of proton exchange membrane fuel cell [J]. Mater. Chem. Phys., 2019, 238: 121916
|
4 |
Song Y X, Zhang C Z, Ling C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energy, 2020, 45(54): 29832
|
5 |
Shen J, Liu W, Wang T G, et al. Corrosion and conductivity behavior of TiN coating on 304 stainless steel bipolar plates [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 63
|
5 |
沈杰, 刘卫, 王铁钢等. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 63
|
6 |
Gao Z Y, Huang N B, Shao Z G, et al. Research on surface modification of PEMFC titanium bipolar plate by NbN [J]. Chin. J. Power Sources, 2019, 43: 1690
|
6 |
高正远, 黄乃宝, 邵志刚等. PEMFC钛双极板表面NbN改性研究 [J]. 电源技术, 2019, 43: 1690
|
7 |
Wang Y, Northwood D O. An investigation on metallic bipolar plate corrosion in simulated Anode and Cathode environments of PEM fuel cells using potential-pH diagrams [J]. Int. J. Electrochem. Sci., 2006, 1: 447
|
8 |
Mandal P, Chanda U K, Roy S. A review of corrosion resistance method on stainless steel bipolar plate [J]. Mater. Today: Proc., 2018, 5: 17852
|
9 |
Asri N F, Husaini T, Sulong A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review [J]. Int. J. Hydrogen Energy, 2017, 42: 9135
|
10 |
Hao K G, Wu A M, Wang M C, et al. Surface modification of titanium-based fuel cell bipolar plate [J]. Batt. Bimonth., 2019, 49: 270
|
10 |
郝凯歌, 吴爱民, 王明超等. 燃料电池钛基金属双极板的表面改性 [J]. 电池, 2019, 49: 270
|
11 |
Xu J, Li Z Y, Xu S, et al. A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application [J]. J. Power Sources, 2015, 297: 359
|
12 |
Xu J, Huang H J, Li Z Y, et al. Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell [J]. J. Alloy. Compd., 2016, 663: 718
|
13 |
Qian Y, Xu J. Properties of Zr nanocrystalline coating on Ti alloy bipolar plates in simulated PEMFC environments [J]. Acta Phys.-Chim. Sin., 2015, 31: 291
|
13 |
钱阳, 徐江. 钛合金双极板表面纳米晶Zr涂层在质子交换膜燃料电池环境中的性能 [J]. 物理化学学报, 2015, 31: 291
|
14 |
Wang J B, Xie Z Y, Gao P P, et al. Corrosion protection of GO-PTFE-C composite coatings on Ti alloy plate [J]. Surf. Technol., 2019, 48(3): 149
|
14 |
王骏斌, 谢志勇, 高平平等. GO-PTFE-C涂层改性Ti金属板的防腐性能研究 [J]. 表面技术, 2019, 48(3): 149
|
15 |
Gao P P, Xie Z Y, Wu X B, et al. Development of Ti bipolar plates with carbon/PTFE/TiN composites coating for PEMFCs [J]. Int. J. Hydrogen Energy, 2018, 43: 20947
|
16 |
Wang J Y, Min L F, Fang F F, et al. Electrodeposition of graphene nano-thick coating for highly enhanced performance of titanium bipolar plates in fuel cells [J]. Int. J. Hydrogen Energy, 2019, 44: 16909
|
17 |
Wang H L, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2003, 115: 243
|
18 |
Fischer D A, Vargas I T, Pizarro G E, et al. The effect of scan rate on the precision of determining corrosion current by Tafel extrapolation: A numerical study on the example of pure Cu in chloride containing medium [J]. Electrochim. Acta, 2019, 313: 457
|
19 |
Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Eletrochim. Acta, 2014, 135: 526
|
20 |
Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol-water electrolytes [J]. Electrochim. Acta, 2012, 78: 65
|
21 |
Iranzo A, Gregorio J M. Ajusa Hydrogen Technologies develops novel bipolar plates with optimised water management for fuel cell stack [J]. Fuel Cells Bull., 2019, 2019(3): 15
|
22 |
Feng K, Li Z G, Lu F G, et al. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel [J]. J. Power Sources, 2014, 249: 299
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|