Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 125-130    DOI: 10.11902/1005.4537.2020.009
  研究报告 本期目录 | 过刊浏览 |
质子交换膜燃料电池中TA1双极板的表面改性研究
韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才()
大连海事大学材料工艺研究所 大连 116026
Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell
HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai()
Institute of Materials Technology, Dalian Maritime University, Dalian 116026, China
全文: PDF(1300 KB)   HTML
摘要: 

针对TA1金属双极板,采用双辉光等离子方法制备出表面Zr改性层 (Zr-TA1),研究了改性层的微观结构和性能。结果表明,Zr改性层厚度约为3 μm且表面平整致密。在模拟PEMFC阴/阳极环境下,Zr-TA1的自腐蚀电位明显升高,腐蚀电流密度降低了1~2个数量级。Zr改性层提高了TA1的疏水性能,其接触角由TA1双极板的71o提高到Zr-TA1的94o。经改性的双极板在140 N·cm-2的装配压力下,接触电阻由117.3 mΩ·cm2降低到了15.5 mΩ·cm2,极大地提高了样品的表面导电性能。

关键词 质子交换膜燃料电池Ti双极板Zr改性层接触电阻耐腐蚀性能    
Abstract

The operation efficiency of proton exchange membrane fuel cell (PEMFC) is primarily affected by the electrical conductivity, corrosion resistance and hydrophobicity of the bipolar plate. Zr coating (Zr-TA1) is prepared by double glow plasma method on TA1 commercial pure Ti-bipolar plate. Then the microstructure and properties of the Zr coated TA1 Ti-plate are studied. It follows that, the thickness of Zr coating is about 3 μm and the coating surface is smooth and compact. Its potentiodynamic/potentiostatic polarization curves are measured in the cathodic and anodic environments of PEMFC, which shows that the corrosion potential of Zr-TA1 is increased significantly and the corrosion current density is decreased by 1~2 orders of magnitude in comparison with the bare TA1 Ti-plate. Furthermore, the hydrophobicity of TA1 is improved by Zr coating and the water contact angle is increased from 71o (TA1) to 94o (Zr-TA1). In addition, the contact resistance of Zr-TA1 (under the compaction pressure of 140 N·cm-2) is decreased from 117.3 mΩ·cm2 to 15.5 mΩ·cm2, namely, the surface conductivity of the Ti-plate was significantly improved.

Key wordsproton exchange membrane fuel cell    Ti bipolar plate    Zr coating    interfacial contact resistance    corrosion resistance
收稿日期: 2020-01-14     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2016YFB0101206)
通讯作者: 孙俊才     E-mail: sunjc@dlmu.edu.cn
Corresponding author: SUN Juncai     E-mail: sunjc@dlmu.edu.cn
作者简介: 韩月桐,男,1994年生,硕士生

引用本文:

韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
Yuetong HAN, Pengchao ZHANG, Jiefu SHI, Ting LI, Juncai SUN. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 125-130.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.009      或      https://www.jcscp.org/CN/Y2021/V41/I1/125

图1  Zr-TA1表面的XRD图
图2  Zr-TA1的表面形貌及Zr-TA1的横截面形貌及EDS分析
图3  Zr-TA1和未改性TA1双极板在模拟PEMFC阴极和阳极环境下的动电位极化曲线
SampleCathodeAnode
Ecorr / VSCEIcorr / μA·cm-20.6 V / A·cm-2Ecorr / VSCEIcorr / μA·cm-2-0.1 V/ A·cm-2
TA1-0.19319.352.91×10-4-0.17810.061.96×10-5
Zr-TA10.0921.132.99×10-50.1010.82---
表1  未改性TA1和Zr-TA1双极板在模拟PEMFC阴/阳极环境下的腐蚀参数
图4  Zr-TA1和未改性TA1双极板在模拟PEMFC阴极和阳极环境下的恒电位极化曲线
图5  未改性TA1和Zr-TA1双极板的水接触角图
图6  在不同模拟PEMFC环境中恒电位极化测试之前/后未改性TA1和Zr-TA1双极板的接触电阻
1 Zhao Q P, Mu Z X, Zhang B, et al. Research progress of bipolar plate material for proton exchange membrane fuel cell [J]. New Chem. Mater., 2019, 47(11): 52
1 赵秋萍, 牟志星, 张斌等. 质子交换膜燃料电池双极板材料研究进展 [J]. 化工新型材料, 2019, 47(11): 52
2 Cao C H, Liang C H, Huang N B. Electrochemical characteristic of stainless steel bipolar plates deposited with niobium [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 123
2 曹彩红, 梁成浩, 黄乃宝. 镀铌不锈钢双极板的电化学性能 [J]. 中国腐蚀与防护学报, 2013, 33: 123
3 Ghorbani M M, Taherian R, Bozorg M. Investigation on physical and electrochemical properties of TiN-coated Monel alloy used for bipolar plates of proton exchange membrane fuel cell [J]. Mater. Chem. Phys., 2019, 238: 121916
4 Song Y X, Zhang C Z, Ling C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energy, 2020, 45(54): 29832
5 Shen J, Liu W, Wang T G, et al. Corrosion and conductivity behavior of TiN coating on 304 stainless steel bipolar plates [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 63
5 沈杰, 刘卫, 王铁钢等. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 63
6 Gao Z Y, Huang N B, Shao Z G, et al. Research on surface modification of PEMFC titanium bipolar plate by NbN [J]. Chin. J. Power Sources, 2019, 43: 1690
6 高正远, 黄乃宝, 邵志刚等. PEMFC钛双极板表面NbN改性研究 [J]. 电源技术, 2019, 43: 1690
7 Wang Y, Northwood D O. An investigation on metallic bipolar plate corrosion in simulated Anode and Cathode environments of PEM fuel cells using potential-pH diagrams [J]. Int. J. Electrochem. Sci., 2006, 1: 447
8 Mandal P, Chanda U K, Roy S. A review of corrosion resistance method on stainless steel bipolar plate [J]. Mater. Today: Proc., 2018, 5: 17852
9 Asri N F, Husaini T, Sulong A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review [J]. Int. J. Hydrogen Energy, 2017, 42: 9135
10 Hao K G, Wu A M, Wang M C, et al. Surface modification of titanium-based fuel cell bipolar plate [J]. Batt. Bimonth., 2019, 49: 270
10 郝凯歌, 吴爱民, 王明超等. 燃料电池钛基金属双极板的表面改性 [J]. 电池, 2019, 49: 270
11 Xu J, Li Z Y, Xu S, et al. A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application [J]. J. Power Sources, 2015, 297: 359
12 Xu J, Huang H J, Li Z Y, et al. Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell [J]. J. Alloy. Compd., 2016, 663: 718
13 Qian Y, Xu J. Properties of Zr nanocrystalline coating on Ti alloy bipolar plates in simulated PEMFC environments [J]. Acta Phys.-Chim. Sin., 2015, 31: 291
13 钱阳, 徐江. 钛合金双极板表面纳米晶Zr涂层在质子交换膜燃料电池环境中的性能 [J]. 物理化学学报, 2015, 31: 291
14 Wang J B, Xie Z Y, Gao P P, et al. Corrosion protection of GO-PTFE-C composite coatings on Ti alloy plate [J]. Surf. Technol., 2019, 48(3): 149
14 王骏斌, 谢志勇, 高平平等. GO-PTFE-C涂层改性Ti金属板的防腐性能研究 [J]. 表面技术, 2019, 48(3): 149
15 Gao P P, Xie Z Y, Wu X B, et al. Development of Ti bipolar plates with carbon/PTFE/TiN composites coating for PEMFCs [J]. Int. J. Hydrogen Energy, 2018, 43: 20947
16 Wang J Y, Min L F, Fang F F, et al. Electrodeposition of graphene nano-thick coating for highly enhanced performance of titanium bipolar plates in fuel cells [J]. Int. J. Hydrogen Energy, 2019, 44: 16909
17 Wang H L, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2003, 115: 243
18 Fischer D A, Vargas I T, Pizarro G E, et al. The effect of scan rate on the precision of determining corrosion current by Tafel extrapolation: A numerical study on the example of pure Cu in chloride containing medium [J]. Electrochim. Acta, 2019, 313: 457
19 Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Eletrochim. Acta, 2014, 135: 526
20 Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol-water electrolytes [J]. Electrochim. Acta, 2012, 78: 65
21 Iranzo A, Gregorio J M. Ajusa Hydrogen Technologies develops novel bipolar plates with optimised water management for fuel cell stack [J]. Fuel Cells Bull., 2019, 2019(3): 15
22 Feng K, Li Z G, Lu F G, et al. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel [J]. J. Power Sources, 2014, 249: 299
[1] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[2] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[3] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[4] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[6] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[7] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[8] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[9] 王平,程英亮,张昭. Ni-SiC纳米复合镀层腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 371-376.
[10] 刘丽红,张子华,闫杰,苏少燕. 化学镀镍磷合金在海洋环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 369-373.
[11] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[12] 林高用,杨伟,万迎春,唐鹏钧,张胜华. 微量稀土对HAl77-2铜合金组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 262-268.
[13] 杨黎晖; 李峻青; 姜巍巍; 赵雪松; 张密林 . 镁锂合金化学镀镍工艺[J]. 中国腐蚀与防护学报, 2008, 28(3): 177-180 .