|
|
超声表面滚压对AZ31B镁合金腐蚀行为的影响 |
岳亮亮, 马保吉( ) |
西安工业大学机电工程学院 陕西省特种加工重点实验室 西安 710021 |
|
Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy |
YUE Liangliang, MA Baoji( ) |
Shaanxi Province Special Processing Key Laboratory, School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an 710021, China |
[1] |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
|
[2] |
Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater. Sci. Eng., 2016, C68: 948
|
[3] |
Lhotka C, Szekeres T, Steffan I, et al. Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements [J]. J. Orthop. Res., 2003, 21: 189
doi: 10.1016/S0736-0266(02)00152-3
pmid: 12568948
|
[4] |
Walker J, Shadanbaz S, Woodfield T B F, et al. Magnesium biomaterials for orthopedic application: A review from a biological perspective [J]. J. Biomed. Mater. Res., 2014, 102B: 1316
|
[5] |
Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27: 1728
doi: 10.1016/j.biomaterials.2005.10.003
|
[6] |
Zeng R C, Cui L Y, Ke W. Medical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2008, 54: 1215
|
[6] |
(曾荣昌, 崔蓝月, 柯伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215)
doi: 10.11900/0412.1961.2018.00032
|
[7] |
Han L Y, Li X, Bai J, et al. Effects of flow velocity and different corrosion media on the in vitro bio-corrosion behaviors of AZ31 magnesium alloy [J]. Mater. Chem. Phys., 2018, 217: 300
doi: 10.1016/j.matchemphys.2018.06.047
|
[8] |
Yuan G Y, Niu J L. Research progress of biodegradable magnesium alloys for orthopedic applications [J]. Acta Metall. Sin., 2017, 53: 1168
doi: 10.11900/0412.1961.2017.00247
|
[8] |
(袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展 [J]. 金属学报, 2017, 53(10): 1168)
doi: 10.11900/0412.1961.2017.00247
|
[9] |
Sunil B R, Kumar T S S, Chakkingal U, et al. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing [J]. Mater. Sci. Eng., 2016, C59: 356
|
[10] |
Guo C G, Xu Y M, Wang L Q, et al. Effect of laser surface strengthening on corrosion behavior of magnesium alloy in simulated body fluid [J]. Surf. Technol., 2017, 46(8): 188
|
[10] |
(郭长刚, 许益蒙, 王凌倩等. 激光表面强化对镁合金在模拟体液中腐蚀行为的影响 [J]. 表面技术, 2017, 46(8): 188)
|
[11] |
Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Ann., 2008, 57: 716
doi: 10.1016/j.cirp.2008.09.005
|
[12] |
Ben Hamu G, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloy. Compd., 2009, 468: 222
|
[13] |
Denkena B, Lucas A. Biocompatible magnesium alloys as absorbable implant materials-adjusted surface and subsurface properties by machining processes [J]. CIRP Ann., 2007, 56: 113
|
[14] |
Salahshoor M, Li C, Liu Z Y, et al. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing [J]. J. Mech. Behav. Biomed. Mater., 2017, 78: 246
pmid: 29179040
|
[15] |
Liu M E, Sheng G M, Yin L J. Effects of high energy shot peening for magnesium alloy AZ31 on the corrosion properties and microhardness [J]. J. Funct. Mater., 2012, 43: 2702
|
[15] |
(刘蒙恩, 盛光敏, 尹丽晶. 高能喷丸对AZ31镁合金耐腐蚀性及硬度的影响 [J]. 功能材料, 2012, 43: 2702)
|
[16] |
Schulze V, Bleicher F, Groche P, et al. Surface modification by machine hammer peening and burnishing [J]. CIRP Ann., 2016, 65: 809
|
[17] |
Zhang Y J. Research on surface strengthening and fatigue failure mechanism of magnesium alloy with gradient nanostructure [D]. Changchun: Jilin University, 2018
|
[17] |
(张艳君. 梯度纳米化镁合金表面强化机制及疲劳失效机理研究 [D]. 长春: 吉林大学, 2018)
|
[18] |
Bai Y H, Chai M L, Yang X J, et al. Study on feasibility of improving fatigue properties of 30CrNiMo8 steel by ultrasonic rolling process [J]. Manuf. Technol. Mach. Tool, 2019, (10): 88
|
[18] |
(白音胡, 柴铭丽, 杨学军等. 超声滚压处理提高30CrNiMo8钢疲劳性能可行性的研究 [J]. 制造技术与机床, 2019, (10): 88)
|
[19] |
Bo W, Zhang L J, Zhang J X, et al. An investigation of ultrasonic nanocrystal surface modification machining process by numerical simulation [J]. Adv. Eng. Software, 2015, 83: 59
|
[20] |
Teimouri R, Amini S, Bami A B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6 [J]. Measurement, 2018, 116: 129
|
[21] |
Wang T. Research on improvement of 40cr steel properties by ultrasonic surface rolling processing [D]. Tianjin: Tianjin University, 2009
|
[21] |
(王婷. 超声表面滚压加工改善40Cr钢综合性能研究 [D]. 天津: 天津大学, 2009)
|
[22] |
Ye X L, Zhu Y L, Zhang D H. Effects of ultrasonic deep rolling on fatigue performance of pre-corroded 7A52 aluminum alloy [J]. Adv. Mater. Res., 2011, 189-193: 897
|
[23] |
Wang B Y, Yin Y, Gao Z W, et al. Influence of the ultrasonic surface rolling process on stress corrosion cracking susceptibility of high strength pipeline steel in neutral pH environment [J]. RSC Adv., 2017, 7: 36876
|
[24] |
Zhang S B, Xiang S, Cheng T, et al. Influence of surface nanocrystallization of 20CrMnTi on behavior of localized corrosion by ultrasonic surface rolling processing [J]. Surf. Technol., 2019, 48(8): 136
|
[24] |
(张胜博, 向嵩, 成桃等. 超声滚压20CrMnTi纳米化表面对局部腐蚀萌生行为的影响 [J]. 表面技术, 2019, 48(8): 136)
|
[25] |
Qi Y H, Fu S C, Gao H, et al. Corrosion behavior and tensile properties of AZ31 magnesium alloy sheet in PBS simulated body fluid [J]. Mech. Eng. Mater., 2014, 38(10): 16
|
[25] |
(祁玉红, 付巳超, 高红等. AZ31镁合金板在PBS模拟体液中的腐蚀行为和拉伸性能 [J]. 机械工程材料, 2014, 38(10): 16)
|
[26] |
Zhang Y J, Yan C W, Wang F H, et al. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution [J]. Corros. Sci., 2005, 47: 2816
|
[27] |
Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2004
|
[27] |
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2004)
|
[28] |
Li Y, Zhang T, Wang F H. Effect of microcrystallization on corrosion resistance of AZ91D alloy [J]. Electrochim. Acta, 2006, 51: 2845
|
[29] |
Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution [D]. Qingdao: University of Chinese Academy of Sciences (Institute of OceanologyChinese Academy of Sciences), 2017
|
[29] |
(李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2017)
|
[30] |
Alvarez-Lopez M, Pereda M D, Del Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J]. Acta Biomater., 2010, 6: 1763
pmid: 19446048
|
[31] |
Takakuwa O, Soyama H. Effect of residual stress on the corrosion behavior of austenitic stainless steel [J]. Adv. Chem. Eng. Sci., 2015, 5: 62
doi: 10.4236/aces.2015.51007
|
[32] |
Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x
pmid: 29967353
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|