Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 560-568    DOI: 10.11902/1005.4537.2019.205
  研究报告 本期目录 | 过刊浏览 |
超声表面滚压对AZ31B镁合金腐蚀行为的影响
岳亮亮, 马保吉()
西安工业大学机电工程学院 陕西省特种加工重点实验室 西安 710021
Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy
YUE Liangliang, MA Baoji()
Shaanxi Province Special Processing Key Laboratory, School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an 710021, China
全文: PDF(10424 KB)   HTML
摘要: 

对AZ31B镁合金进行超声滚压表面处理,利用电化学测试手段评价了改性后合金的耐蚀性能,通过SEM和白光干涉仪观察分析了合金处理层微观组织、表面形貌以及腐蚀后表面形貌。结果表明,经过表面处理后,镁合金表层晶粒发生明显细化且表面平整,表面腐蚀产物分布均匀且致密性高,去除腐蚀产物后表面点蚀坑细小密集。在浸泡前期,经表面处理试样的钝化膜层电阻Rf为9020 Ω,远大于未经表面处理试样的14.8 Ω。在浸泡中期,未经表面处理试样的阻抗谱图上出现扩散过程引起的阻抗特征,此时钝化膜层电阻Rf为22.9 Ω,远远小于经表面处理试样的19800 Ω。在浸泡后期,表面处理试样钝化膜层电阻Rf为31400 Ω,而未经表面处理试样的为11400 Ω。超声表面滚压处理降低了镁合金表面粗糙度及晶粒尺寸,进而增加了镁合金在溶液中钝化膜的均匀性和致密性,阻滞了镁合金表面的电化学反应过程,延缓了镁合金的腐蚀。

关键词 镁合金超声滚压阻抗谱表面形貌电化学腐蚀机理    
Abstract

The article aims to develop a new processing technique to efficiently improve the corrosion resistance of Mg-alloy, thus ultrasonic surface rolling process (USRP) was applied to modify the corrosion resistance of extruded AZ31B Mg-alloy. The grain size and surface morphology as well as the corrosion behavior of AZ31B Mg-alloy before and after ultrasonic surface rolling were comparatively examined by means of metallomicroscope and scanning electron microscopy, white light interferometer and electrochemical impedance spectroscopy. The results implied that USRP has significant influence on the grain size and surface morphology, in turn it has important influence on the corrosion behavior of AZ31B alloy. Compared with the bare alloy, the corrosion product film on USRPed alloy was much uniform and dense, while after removal of the corrosion products, small and dense corrosion pits could be seen on the Mg-alloy surface. The passivation film resistance (Rf=9020 Ω) of the treated alloy was much larger than that (Rf=14.8 Ω) of the bare alloy in the early stage of immersion. The impedance characteristic caused by the diffusion process appeared on the impedance spectrum of the bare alloy in the middle of immersion. At this time, the film resistance Rf=22.9 Ω, which is much smaller than the film resistance Rf=19800 Ω of the USRPed alloy. In the late stage of immersion, the passivation film resistance was Rf=31400 Ω for the USRPed alloy, while Rf=14400 Ω for the bare Mg-alloy. It follows that the ultrasonic surface rolling process could reduce the surface roughness, and refine the grains of Mg-alloy, thus increase the uniformity and compactness of passivation film on Mg-alloy, namely retard the electrochemical reaction process on the alloy surface, therewith reduce the occurrence of local pitting, then reduce the corrosion rate of Mg-alloy.

Key wordsmagnesium alloy    ultrasonic surface rolling process    EIS    surface morphology    electrochemical behavior    corrosion mechanism
收稿日期: 2019-11-09     
ZTFLH:  TG174.4  
基金资助:陕西省重点研发计划(2018GY-120);陕西省特种加工重点实验室开放基金(2017SXTZKFJG02);陕西省教育厅重点;实验室科研计划项目(17JS056)
通讯作者: 马保吉     E-mail: mabaoji@xatu.edu.com
Corresponding author: MA Baoji     E-mail: mabaoji@xatu.edu.com
作者简介: 岳亮亮,男,1994年生,硕士生

引用本文:

岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
Liangliang YUE, Baoji MA. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 560-568.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.205      或      https://www.jcscp.org/CN/Y2020/V40/I6/560

图1  超声表面滚压加工示意图
图2  用于形貌观察和腐蚀性能测试的试样
图3  用于微观组织观察的试样
图4  镁合金AZ31B在车削和USRP加工后的表面三维形貌及表面轮廓
图5  滚压前后镁合金试样的微观组织形貌
图6  两种镁合金试样在37 ℃浸泡不同时间后的Nyquist图
图7  两种试样在PBS中浸泡360 h后的表面腐蚀形貌
图8  两种试样在PBS中浸泡360 h并去除腐蚀产物后的表面腐蚀形貌
图9  浸泡2 h后试样1和试样2的Bode图
图10  滚压前后镁合金试样在PBS溶液中的溶解模型及等效电路
图11  浸泡24,48,和96 h后两种镁合金试样的Bode图
SampleTime / hRs / ΩQf / μFRf / ΩQdl / μFRt / ΩZw / DW
Type 129.249.815805230.0---
2410.379.4963090629.5---
487.091.517000179033.5---
962.6204.0232105440.0501
14417.482.49310210028.6---
24016.7203.02130096615.0---
36024.576.61140097925.4---
Type 228.381.3902033828.3---
2411.787.21450025019.7---
4811.894.11080017914.9---
9614.0103.01980023819.4---
14414.067.410600267030.5---
24027.3101.01590065629.7---
36014.986.331400169027.8---
表1  两种镁合金试样浸泡不同时间后的阻抗拟合结果
图12  浸泡96 h后试样1的等效电路
图13  浸泡144,240,和360 h后两种镁合金试样的Bode图
图14  镁合金试样1和2在PBS溶液中的界面移动模型
[1] Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
[2] Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater. Sci. Eng., 2016, C68: 948
[3] Lhotka C, Szekeres T, Steffan I, et al. Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements [J]. J. Orthop. Res., 2003, 21: 189
doi: 10.1016/S0736-0266(02)00152-3 pmid: 12568948
[4] Walker J, Shadanbaz S, Woodfield T B F, et al. Magnesium biomaterials for orthopedic application: A review from a biological perspective [J]. J. Biomed. Mater. Res., 2014, 102B: 1316
[5] Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27: 1728
doi: 10.1016/j.biomaterials.2005.10.003
[6] Zeng R C, Cui L Y, Ke W. Medical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2008, 54: 1215
[6] (曾荣昌, 崔蓝月, 柯伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215)
doi: 10.11900/0412.1961.2018.00032
[7] Han L Y, Li X, Bai J, et al. Effects of flow velocity and different corrosion media on the in vitro bio-corrosion behaviors of AZ31 magnesium alloy [J]. Mater. Chem. Phys., 2018, 217: 300
doi: 10.1016/j.matchemphys.2018.06.047
[8] Yuan G Y, Niu J L. Research progress of biodegradable magnesium alloys for orthopedic applications [J]. Acta Metall. Sin., 2017, 53: 1168
doi: 10.11900/0412.1961.2017.00247
[8] (袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展 [J]. 金属学报, 2017, 53(10): 1168)
doi: 10.11900/0412.1961.2017.00247
[9] Sunil B R, Kumar T S S, Chakkingal U, et al. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing [J]. Mater. Sci. Eng., 2016, C59: 356
[10] Guo C G, Xu Y M, Wang L Q, et al. Effect of laser surface strengthening on corrosion behavior of magnesium alloy in simulated body fluid [J]. Surf. Technol., 2017, 46(8): 188
[10] (郭长刚, 许益蒙, 王凌倩等. 激光表面强化对镁合金在模拟体液中腐蚀行为的影响 [J]. 表面技术, 2017, 46(8): 188)
[11] Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Ann., 2008, 57: 716
doi: 10.1016/j.cirp.2008.09.005
[12] Ben Hamu G, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloy. Compd., 2009, 468: 222
[13] Denkena B, Lucas A. Biocompatible magnesium alloys as absorbable implant materials-adjusted surface and subsurface properties by machining processes [J]. CIRP Ann., 2007, 56: 113
[14] Salahshoor M, Li C, Liu Z Y, et al. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing [J]. J. Mech. Behav. Biomed. Mater., 2017, 78: 246
pmid: 29179040
[15] Liu M E, Sheng G M, Yin L J. Effects of high energy shot peening for magnesium alloy AZ31 on the corrosion properties and microhardness [J]. J. Funct. Mater., 2012, 43: 2702
[15] (刘蒙恩, 盛光敏, 尹丽晶. 高能喷丸对AZ31镁合金耐腐蚀性及硬度的影响 [J]. 功能材料, 2012, 43: 2702)
[16] Schulze V, Bleicher F, Groche P, et al. Surface modification by machine hammer peening and burnishing [J]. CIRP Ann., 2016, 65: 809
[17] Zhang Y J. Research on surface strengthening and fatigue failure mechanism of magnesium alloy with gradient nanostructure [D]. Changchun: Jilin University, 2018
[17] (张艳君. 梯度纳米化镁合金表面强化机制及疲劳失效机理研究 [D]. 长春: 吉林大学, 2018)
[18] Bai Y H, Chai M L, Yang X J, et al. Study on feasibility of improving fatigue properties of 30CrNiMo8 steel by ultrasonic rolling process [J]. Manuf. Technol. Mach. Tool, 2019, (10): 88
[18] (白音胡, 柴铭丽, 杨学军等. 超声滚压处理提高30CrNiMo8钢疲劳性能可行性的研究 [J]. 制造技术与机床, 2019, (10): 88)
[19] Bo W, Zhang L J, Zhang J X, et al. An investigation of ultrasonic nanocrystal surface modification machining process by numerical simulation [J]. Adv. Eng. Software, 2015, 83: 59
[20] Teimouri R, Amini S, Bami A B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6 [J]. Measurement, 2018, 116: 129
[21] Wang T. Research on improvement of 40cr steel properties by ultrasonic surface rolling processing [D]. Tianjin: Tianjin University, 2009
[21] (王婷. 超声表面滚压加工改善40Cr钢综合性能研究 [D]. 天津: 天津大学, 2009)
[22] Ye X L, Zhu Y L, Zhang D H. Effects of ultrasonic deep rolling on fatigue performance of pre-corroded 7A52 aluminum alloy [J]. Adv. Mater. Res., 2011, 189-193: 897
[23] Wang B Y, Yin Y, Gao Z W, et al. Influence of the ultrasonic surface rolling process on stress corrosion cracking susceptibility of high strength pipeline steel in neutral pH environment [J]. RSC Adv., 2017, 7: 36876
[24] Zhang S B, Xiang S, Cheng T, et al. Influence of surface nanocrystallization of 20CrMnTi on behavior of localized corrosion by ultrasonic surface rolling processing [J]. Surf. Technol., 2019, 48(8): 136
[24] (张胜博, 向嵩, 成桃等. 超声滚压20CrMnTi纳米化表面对局部腐蚀萌生行为的影响 [J]. 表面技术, 2019, 48(8): 136)
[25] Qi Y H, Fu S C, Gao H, et al. Corrosion behavior and tensile properties of AZ31 magnesium alloy sheet in PBS simulated body fluid [J]. Mech. Eng. Mater., 2014, 38(10): 16
[25] (祁玉红, 付巳超, 高红等. AZ31镁合金板在PBS模拟体液中的腐蚀行为和拉伸性能 [J]. 机械工程材料, 2014, 38(10): 16)
[26] Zhang Y J, Yan C W, Wang F H, et al. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution [J]. Corros. Sci., 2005, 47: 2816
[27] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2004
[27] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2004)
[28] Li Y, Zhang T, Wang F H. Effect of microcrystallization on corrosion resistance of AZ91D alloy [J]. Electrochim. Acta, 2006, 51: 2845
[29] Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution [D]. Qingdao: University of Chinese Academy of Sciences (Institute of OceanologyChinese Academy of Sciences), 2017
[29] (李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2017)
[30] Alvarez-Lopez M, Pereda M D, Del Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J]. Acta Biomater., 2010, 6: 1763
pmid: 19446048
[31] Takakuwa O, Soyama H. Effect of residual stress on the corrosion behavior of austenitic stainless steel [J]. Adv. Chem. Eng. Sci., 2015, 5: 62
doi: 10.4236/aces.2015.51007
[32] Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x pmid: 29967353
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[7] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[8] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[9] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[10] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[11] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[12] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[13] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[14] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[15] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.