Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (1): 10-17    DOI:
Review Current Issue | Archive | Adv Search |
PROGRESS IN CORROSION BEHAVIOR INVESTIGATION OF BIOMEDICAL METALLIC MATERIALS INFLUENCED BY PROTEINS
LIU Chenglong1, WANG Meng1, ZHANG Chunyan1, WANG Yueji2,ZENG Rongchang1, HUANG Weijiu1
1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050
2. School of Applied Technology, Chongqing University of Technology,Chongqing 400050
Download:  PDF(7845KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the adsorption and chelation effects between proteins and biomedical metals, this review focuses its attention mainly on the impact of proteins on the corrosion behavior of biomedical metal materials, such as titanium & titanium alloys, stainless steels, cobalt-based alloys, magnesium alloys, and so on. The paper mainly discusses the corrosion behavior and mechanism of biomedical metals affected by albumin, fibrinogen, and serum. Some scientific issues in the present studies and the future research directions are pointed out.
Key words:  biomaterials      protein      corrosion      stainless steel      Ti-based alloy      Co-based alloy     
Received:  25 December 2009     
ZTFLH: 

TG172.7

 
Corresponding Authors:  LIU Chenglong,HUANG Weijiu     E-mail:  liuchenglong@cqut.edu.cn;huangweijiu@cqut.edu.cn

Cite this article: 

LIU Chenglong, WANG Meng, ZHANG Chunyan, WANG Yueji,ZENG Rongchang, HUANG Weijiu. PROGRESS IN CORROSION BEHAVIOR INVESTIGATION OF BIOMEDICAL METALLIC MATERIALS INFLUENCED BY PROTEINS. J Chin Soc Corr Pro, 2011, 31(1): 10-17.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I1/10

[1] Li S P. Introduction of Biomedical Materials [M]. Wuhan: Wuhan University of Technology Press, 2000: 52-55

    (李世普. 生物医用材料导论 [M]. 武汉: 武汉工业大学出版社,2000:52-55)

[2] Cui F Z, Feng Q L. Biomaterials Science [M]. Beijing: Tsinghua University Press, 2004: 8-10

    (崔福斋,冯庆玲. 生物材料学 [M]. 北京: 清华大学出版社,2004: 8-10)

[3] Mudali U K, Sridhar T M, Raj B. Corrosion of bioimplants [J].Sadhana, 2003, 28: 601-637

[4] Yan H H, Zhao S F, Chen G F. Review of the absorption mechanism for proteins on metal surfaces [J]. Chin. J. Oral Implantol., 1997,2(4): 189-193

    (严洪海,赵士芳,陈关福. 金属表面的蛋白吸附的机理研究现状 [J]. 中国口腔种植学杂志,1997,2(4): 189-193)

[5] Li G C, Zhu S F, Yang P, et al. Investigation of protein adsorption by quartz crystal microbalance [J]. Sens. World, 2007,12: 6-10

    (李贵才,朱生发,杨苹等. 石英晶体微天平在蛋白吸附领域的研究进展 [J]. 传感器世界,2007, 12: 6-10)

[6] Yan H H, Zhao S F, Chen G F. Research methods for protein absorption on the surface of biomedical metal materials [J]. Chin.J. Oral Implantol., 1998, 3(2): 89-92

    (严洪海,赵士芳,陈关福. 金属生物材料表面的蛋白吸附的研究方法 [J]. 中国口腔种植学杂志,1998,3(2): 89-92)

[7] Zhong B, Zhang H. Evolution of theoretical study on protein adsorption on solid substrates [J]. J. Shenyang Normal Univ. (Nat.Sci.), 2006, 24(2): 158-160

    (钟博,张辉. 固体表面蛋白质吸附理论研究进展 [J]. 沈阳师范大学学报, 2006, 24(2):158-160)

[8] Haynes C A, Norde W. Globular proteins at solid/liquid interfaces [J]. Coll. Surf. B: Biointerfaces, 1994; 2: 517-566

[9] Baier R. Conditioning surface to suit the biomedical environment recent progress [J]. J. Biomech. Eng., 1982, 104: 257-271

[10] Arnebrant T, Ivarsson B, Larsson K, et al. Bilayer formation at adsorption of proteins from aqueous solutions on metal surfaces [J].Prog. Colloid Polym. Sci., 1985, 70: 62-66

[11] Li Y, Cheng R S. Development of studying for protein adsorption on the solid surface [J]. Chin. Polym. Bull., 2007, 3: 41-49

     (李艺,程镕时. 蛋白质在固体表面吸附的研究进展 [J]. 高分子通报, 2007,3: 41-49)

[12] Serro A, Fernandes A C, Saramago B, et al. Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects [J]. J. Biomed. Mater. Res., 1999, 46: 376-381

[13] Zhou H, Huo D Q. Study of adsorption and competitive adsorption of plasma proteins onto the surfaces of biomaterial [D]. Chongqing:Chongqing University, 2007

     (周浩,霍丹群. 血浆蛋白质在生物材料表面的吸附和竞争吸附 [D]. 重庆:重庆大学, 2007)

[14] Kang C K, Lee Y S. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption [J]. J. Mater. Sci.: Mater. Med., 2007, 18: 1389-1398

[15] Krajewski A, Piancastelli A, Malavolti R. Albumin adhesion on ceramics and correlation with their Z-potential [J]. Biomaterials,1998, 19: 637-641

[16] Huang J, Le Y L, Zheng C Q. Vorman effect of plasma protein adsorption to biomaterials surfaces [J]. J. Biomed.Eng., 1999, 66(3): 371-376

     (黄嘉,乐以伦,郑昌琼. 血浆蛋白质在生物材料表面吸附时的Vorman效应 [J]. 生物医学工程学杂志, 1999, 66(3): 371-376)

[17] Norde W, Lyklema J. Why proteins prefer interfaces [J]. J.Biomater. Sci. Polym., 1991, 2: 183-202

[18] Willams R L, Willams D F. Albumin adsorption on metal surface [J].Biomaterials, 1988, 9: 206-212

[19] Klinger A, Steinberg D, Kohavi M N. Mechanism of adsorption of human albumin to titanium in vitro [J]. J. Biomed.Mater. Res., 1997, 36: 387-392

[20] Clark G C F, Williams D F. The effects of proteins on metallic corrosion [J]. Biomed. Mater.Res., 1982, 16: 125-134

[21] Contu F, Elsener B, Bohni H.Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I.Mechanically polished samples [J]. J. Biomed. Mater. Res.,2002, 62: 412-421

[22] Okazaki Y, Tateishi T, Ito Y. Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films [J]. Mater. Trans., 1997,38: 78-84

[23] Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys [J]. Biomaterials, 1988, 9: 181-186

[24] Sousa S R, Barbosa M A. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins [J]. Clin. Mater.,1993, 14: 287-294

[25] Speck K M, Fraker A C. Anodic polarization behavior of Ti-Ni and Ti-6AI-4V in simulated physiological solutions [J]. J. Dent. Res., 1980, 59: 1590-1595

[26] Rondelli G, Torricelli P, Fini M, et al. In vitro corrosion study by EIS of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steel [J]. J.Biomed. Mater. Res. Part B: Appl. Biomat., 2006, 79B: 320-324

[27] Cheng X L, Sharon G R. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins [J]. Biomaterials,2005, 26: 7350-7356

[28] Hanawa T, Kohayama Y, Hiromoto S, et al.Effects of biological factors on the repassivation current of titanium [J]. Mater. Trans., 2004, 45: 1635-1639

[29] Khan M A, Williams R L, Williams D F. The corrosion behavior of Ti6Al4V, Ti6Al7Nb and Ti13Nb13Zr in protein solutions [J].Biomaterials, 1999, 20: 631-637

[30] Querd A, A-Dumont C, Normand B, et al. Reactivity of titanium in physiological medium [J]. J. Electrochem. Soc., 2007,154: C593-C601

[31] Lima J, Sousa S R, Ferreira A, et al.Interactions between calcium, phosphate, and albumin on the surface of titanium [J]. J. Biomed. Mater. Res., 2001, 55: 45-53

[32] Lewis A C, Heard P J. The effect of calcium phosphate deposition upon corrosion of CoCr alloys and the potential for implant failure [J].J. Biomed. Mater. Res., 2005, 75A: 365-373

[33] Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin [J]. Biomaterials, 2005, 26: 829-837

[34] Ide K, Hattori M,Hasegawa K, et al. The effect of fluoride and albumin on corrosion of titanium [J]. J. Dent. Res., 2001, 80: 663-670

[35] Ide K, Hattori M, Yoshinari M, et al. The influence of albumin on corrosion resistance of titanium in fluoride solution [J]. J. Dent.Mater, 2003, 22(3): 359-70

[36] Huang H H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4V alloy [J].Biomaterials, 2003, 24: 275-282

[37] Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys [J]. Biomaterials, 1999, 20: 765-772

[38] Brown S A, Merritt K, Fraker A C, et al. Second Symposium of Corrosion and Degradation of Implant Materials [C]. Philadelphia, 1985: 105-116

[39] Contu F, Elsener,Bohni H. A study of the potentials achieved during mechanical abrasion and the repassivation rate of titanium and Ti6Al4V in inorganic buffer solutions and bovine serum [J]. Electrochim. Acta,2004, 50: 33-41

[40] Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behavior of a Ti6Al4V alloy [J].Wear, 2006, 261: 1002-1011

[41] Kocijan A, Milosev I. The influence of complexing agent and proteins on the corrosion of stainless and their metal components [J]. J. Mater. Sci.: Mater. Med., 2003, 14: 69-77

[42] Tang Y C, Katsuma S, Fujimoto S, et al. Electrochemical study of type 304 and 316 stainless steels in simulated body fluids and cell cultures [J]. Electrochim. Acta, 2006, 2: 709-715

[43] Sousa S R, Barbosa M A. Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions [J]. J. Mater.Sci.: Mater. Med., 1991, 2: 19-26

[44] Brown S A, Merritt K.Electrochemical corrosion in saline and serum [J]. J. Biomed. Mater.Res., 1980, 14, 173-175

[45] Valero V C, Igual M A. Electrochemical characterization of biomedical alloys for surgical implants in simulated body fluids [J]. Corros. Sci., 2008, 50: 1954-1961

[46] Omanovic S, Roscoe S. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel [J]. Langmuir,1999, 15: 8315-8321

[47] Guo L, Liang C H, Guo H X, et al. Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution [J]. J. Biomed. Eng., 2001, 18(4): 565-567

     (郭亮,梁成浩,郭海霞等. 纤维蛋白原对模拟人工体液中不锈钢腐蚀行为的影响 [J]. 生物医学工程学杂志, 2001, 18(4): 565-567)

[48] Frateur I, Lartundo-R L, Methivier C, et al. Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium [J]. Electrochim.Acta, 2006, 51: 1550-1557

[49] Hsu H M, Buchanan R A. Serum concentration effects on the biocorrosion of surgical stainless steel [J]. Trans. Soc. Biomat.,1984, 7: 128-132

[50] Rondelli G, Torricelli P, Fini M. et al. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications [J]. Biomaterials, 2005, 26: 739-744

[51] Singh R, Dahotre N B. Corrosion degradation and prevention by surface modification of biometallic materials [J]. J. Mater. Sci.:Mater. Med., 2007, 18: 725-751

[52] Badawy W A, Al-Kharafi F M, Al-Ajimi J R. Electrochemical behavior of cobalt in aqueous solutions of different pH [J]. J. Appl. Electrochem., 2000, 30: 693-704

[53] Milosev I, Strehblow H H. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution [J]. Electrochim. Acta, 2003, 48: 2767-2774

[54] Lewis A C, Kilburn M R, Allen G C, et al. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants [J]. J. Biomed. Mater. Res., 2005, 73A: 456-467

[55] Hallab N J, Skipor A, Jacobs J J. Interfacial kinetics of titanium- and cobalt-based implant alloys in human serum: Metal release and biofilm formation [J]. J. Biomed. Mater. Res., 2003,65A: 311-318

[56] Liang C H, Guo H X, Zheng R F. The effect of fibrinogen on the corrosion behavior of CoCrNi alloys in PBS simulated body fluid [J]. Rare Met. Mater. Eng., 2006, 35: 528-532

[57] Querd A, A-Dumont C, Normand B, et al. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface [J]. Electrochem. Acta, 2008,53:4461-4469

[58] Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials-Assessing the formation and effect of the biofilm [J]. Tribol. Int., 2007, 40: 1492-1499

[59] Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments [J]. Wear, 2007, 263: 1105-1111

[60] Sun D, Wharton J A, Wood R J K, et al. Microabrason-corrosion of cast CoCrMo alloy in simulated body fluids [J]. Tribol. Int., 2009, 42: 99-110

[61] Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurement of magnesium alloys [J]. Biomaterials, 2006,27: 1013-1018

[62] Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C 29: 1559-1568

[63] Liu C L, Xin Y C, Tian X B, et al. Degradation susceptibility of surgical magnesium alloy in artificial albumin-containing biological fluid [J]. J. Mater. Res., 2007, 22: 1806-1814

[64] Rettig R, Virtanen S.Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids [J]. J.Biomed. Mater. Res., 2008, 85(1): 167-175

[65] Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids [J]. J. Biomed. Mater. Res., 2009, 88(2): 359-369

[66] Zhu J J, Xu N X. Study of corrosion behavior for copper in simulated uterine fluid in the presence of proteins [D]. Shanghai: Institute of Metallurgy, Academy of Sciences of China, 2000

     (朱建军,徐乃欣. 铜在含有蛋白质的模拟宫腔中的腐蚀行为研究 [D].上海:中国科学院冶金研究所,2000)

[67] Pinto E M, Soares D M, Brett C M A. Interaction of BSA protein with copper evaluated by electrochemical impedance spectroscopy and quartz crystal microbalance [J]. Electrochim. Acta, 2008,53: 7460-7466

[68] Pinto E M, Soares D M, Brett C M A. Influence of ultrasound irradiation on the adsorption of bovine serum albumin on copper [J]. J.Appl. Electrochem., 2007, 37: 1367-1373
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!