Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 110-116    DOI: 10.11902/1005.4537.2020.039
Current Issue | Archive | Adv Search |
Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments
TANG Rongmao1, ZHU Yichen1, LIU Guangming1(), LIU Yongqiang1, LIU Xin2, PEI Feng2
1.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
Download:  HTML  PDF(2085KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Q235 steel/conducting concrete in saline-alkali soil, yellow-brown soil, and red soil respectively was studied by means of potentiostatic scanning and electrochemical impedance spectroscopy (EIS) techniques, so that to reveal the influence of soil environmental factors on the corrosion process. Based on the grey correlation theory, the influence weight of each ion in soils on the corrosion process of Q235 steel in conductive concrete was calculated. The results show that after 45 d of accelerated corrosion, holes and fine cracks appeared on the surface of Q235 steel/conducting concrete. The corrosion rate of Q235 steel/conducting concrete in three typical soil environments may be ranked from small to large according to soil type: saline-alkali soil, yellow-brown soil, and red soil. The calculation results of the grey correlation degree show that when the Q235 steel/conducting concrete is corroded in the soil, the weighting of soil environmental factors may be ranked as follows: pH>[SO42-]>[Ca2+]>[Cl-]>[HCO3-]>[Mg2+]>[Fe3+]. As the pH of the soil environment decreases, the degradation degree of conductive concrete increases, while the corrosion rate increases. H+ and SO42- in the soil will directly react with conductive concrete components, resulting in concrete degradation, which has the greatest impact weight. Ca2+ can migrate inward to the conductive concrete pore fluid, therewith leading the precipitation of relevant oxides or carbonates there, which act as physical protective means, hence the impact weight of Ca2+ is slightly lower. The influence of Cl- on the corrosion of Q235 steel is inhibited by the insulation effect of the concrete layer and the electric double layer, so the influence weight is also lower.

Key words:  Q235 steel/conducting concrete      soil corrosion      electrochemical test      grey correlation     
Received:  10 March 2020     
ZTFLH:  TG147.2  
Fund: National Natural Science Fundation of China(51961028);Technology Project of State Grid;Corporation(521820170024)
Corresponding Authors:  LIU Guangming     E-mail:  gemliu@126.com

Cite this article: 

TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 110-116.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.039     OR     https://www.jcscp.org/EN/Y2021/V41/I1/110

SoilCa2+ / mmol·L-1Mg2+ / mmol·L-1Fe3+ / mmol·L-1Cl- / mmol·L-1SO42- / mmol·L-1HCO3- / mmol·L-1pH
Saline-alkali soil0.2501.4351.31250.71000.31007.698.02
Yellow brown soil0.12160.13170.12120.17600.41001.267.84
Red soil0.06150.06460.00860.10000.33800.424.97
Table 1  Physical and chemical properties of three typical soils
Raw material consumption / kg·m-3Carbon nanotubes / %PAN-based carbon fiber / %Water reducing agent / %Defoamer%
CementCoal ashMineral powderWater
28033.650.41400.20.310.1
Table 2  Test mix ratio of conductive concrete
Fig.1  Schematic diagram of experimental device
Fig.2  XRD patterns of conductive concrete before and after corrosion
Fig.3  Macroscopic corrosion morphologies of sample before (a) and after corrosion in saline-alkali soil (b), yellow brown soil (c) and red soil (d)
Fig.4  Potential polarization curves of sample after 45 d of corrosion in three typical soils
SampleIcorr / A·cm-2Ecorr / Vβa / V·dec-1βc / V·dec-1
Saline-alkali soil3.770×10-7-0.8692.0477.928
Yellow brown soil3.819×10-7-0.8463.9036.507
Red soil2.752×10-6-0.7424.5155.550
Table 3  Fitting parameters of polarization curves of sample after 45 d of corrosion in three typical soils
Fig.5  Nyquist (a) and bode (b) diagrams of samples after 45 d of corrosion in three typical soils
Fig.6  Equivalent circuit models of samples in three typical soils
TimedRs / ×102Ω·cm2Rc / ×102Ω·cm2Cc / ×10-9F·cm-2nc

Rf / ×102

Ω·cm2

Qf / ×10-6

F·cm-2

nf

Rct / ×104

Ω·cm2

Qdl / ×10-6

F·cm-2

ndl

W / ×10-5

Ω·cm2

Saline-alkali soil1.843.752.560.3821.87.280.4810.826.80.596.45
Yellow brown soil2.262.383.480.332.769.240.413.0334.30.633.37
Red soil3.551.646.670.294.8726.60.381.555.460.7712.00
Table 4  EIS fitting parameters of the samples after 45 d of corrosion in three typical soils
SequenceX0X1X2X3X4X5X6X7
symbolIcorr / A·cm-2Ca2+ / mmol·L-1Mg2+ / mmol·L-1Fe3+ / mmol·L-1Cl- / mmol·L-1SO42- / mmol·L-1HCO3- / mmol·L-1pH
Saline-alkali soil3.770×10-70.25001.43501.31250.71000.31007.69008.02
Yellow brown soil3.819×10-70.12160.13170.12120.17600.41001.26007.84
Red soil2.752×10-60.06150.06460.00860.10000.33800.42004.97
Table 5  Correlated sequence of Q235 steel corrosion current density and soil environmental factors
1 Hu Y C, Ruan J J, Gong R H, et al. Flexible graphite composite electrical grounding material and its application in tower grounding grid of power transmission system [J]. Power Syst. Technol., 2014, 38: 2851
胡元潮, 阮江军, 龚若涵等. 柔性石墨复合接地材料及其在输电线路杆塔接地网中的应用 [J]. 电网技术, 2014, 38: 2851
2 Hu R G. Electrochemical study on corrosion process of steel rebar/concrete system [D]. Xiamen: Xiamen University, 2004
胡融刚. 钢筋/混凝土体系腐蚀过程的电化学研究 [D]. 厦门: 厦门大学, 2004
3 Zhu Y C, Liu G M, Liu X, et al. Investigation on interrelation of field corrosion test and accelerated corrosion test of grounding materials in red soil environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 550
朱亦晨, 刘光明, 刘欣等. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 550
4 Liu X, Zhu Y C, Pei F, et al. Galvanic corrosion behavior of Q235 steel-red copper in acid red soil of different temperatures [J]. Surf. Technol., 2018, 47(9): 157
刘欣, 朱亦晨, 裴锋等. Q235钢-紫铜在不同温度酸性红壤中的电偶腐蚀行为 [J]. 表面技术, 2018, 47(9): 157
5 Ke Y, Feng C, Zhou Q, et al. Analysis of the influence of concrete pore structure on strength and durability based on grey relation theory [J]. Concrete, 2019, (5): 42
柯杨, 冯诚, 周琴等. 基于灰关联理论的混凝土孔结构对强度和耐久性的影响分析 [J]. 混凝土, 2019, (5): 42
6 Jiang Y M, Wu M, Chen X, et al. Grey relational analysis for soil corrosion of a buried pipeline [J]. Corros. Prot., 2011, 32: 564
姜永明, 吴明, 陈旭等. 某油田埋地管道土壤腐蚀的灰色关联分析 [J]. 腐蚀与防护, 2011, 32: 564
7 Fu C Y, Zheng J S, Zhao J M, et al. Application of grey relational analysis for corrosion failure of oil tubes [J]. Corros. Sci., 2001, 43: 881
8 Wang H T, Han E-H, Ke W. Gray model and gray relation analysis for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 278
王海涛, 韩恩厚, 柯伟. 碳钢、低合金钢大气腐蚀的灰色模型预测及灰色关联分析 [J]. 腐蚀科学与防护技术, 2006, 18: 278
9 Zha F L, He T X, Feng B, et al. Grey correlation analysis of grounding grid materials corroded in soil extract solutions [J]. Corros. Prot., 2014, 35: 1212
查方林, 何铁祥, 冯兵等. 接地网材料在土壤浸出液中腐蚀的灰色关联度分析 [J]. 腐蚀与防护, 2014, 35: 1212
10 Wang H, Li J P, Li L, et al. Service life of underground concrete pipeline with original incomplete cracks in chlorinated soils: Theoretical prediction [J]. Construct. Build. Mater., 2018, 188: 1166
11 Ma X X. The classification of main soil corrosion to concrete materials in our country [J]. Build. Sci., 2003, 19(6): 56
马孝轩. 我国主要类型土壤对混凝土材料腐蚀性规律的研究 [J]. 建筑科学, 2003, 19(6): 56
12 Wang S X, Du N, Liu D X, et al. Corrosion kinetics and the relevance analysis for X80 steel in a simulated acidic soil solution and outdoor red soil [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 18
王帅星, 杜楠, 刘道新等. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析 [J]. 中国腐蚀与防护学报, 2019, 39: 18
13 Sagoe-crentsil K K, Glasser F P, Irvine J T S. Electrochemical characteristics of reinforced concrete corrosion as determined by impedance spectroscopy [J]. Br. Corros. J., 1992, 27: 113
14 Vedalakshmi R, Palaniswamy N. Analysis of the electrochemical phenomenon at the rebar-concrete interface using the electrochemical impedance spectroscopic technique [J]. Mag. Concrete Res., 2010, 62: 177
15 Wang S, Luo H, Li Z Z, et al. Corrosion behavior of three kinds of typical grounded metal in simulated solution of Shanxi soil [J]. Mater. Prot., 2012, 45(2): 70
王森, 骆鸿, 李志忠等. 陕西土壤模拟液中3种典型接地金属材料的腐蚀行为 [J]. 材料保护, 2012, 45(2): 70
16 Qiu L F. Experimental study on corrosion process of reinforced concrete in sulfate-chloride environment [D]. Nanjing: Nanjing University of Science and Technology, 2017
邱林峰. 硫酸盐—氯盐环境下钢筋混凝土腐蚀过程的实验研究 [D]. 南京: 南京理工大学, 2017
17 Shi J J, Sun W. Recent research on steel corrosion in concrete [J]. J. Chin. Ceram. Soc., 2010, 38: 1753
施锦杰, 孙伟. 混凝土中钢筋锈蚀研究现状与热点问题分析 [J]. 硅酸盐学报, 2010, 38: 1753
18 Shi J J, Sun W. Models for corrosion rate of steel in concrete—A short review [J]. J. Chin. Ceram. Soc., 2012, 40: 620
施锦杰, 孙伟. 混凝土中钢筋腐蚀速率模型研究进展 [J]. 硅酸盐学报, 2012, 40: 620
19 Wang D J. Analysis on influence of acid rain pollution on durability of reinforced concrete composite beams [J]. Environ. Sci. Manage., 2019, 44(10): 54
王德俊. 酸雨污染对钢筋混凝土组合梁结构耐久性的影响研究 [J]. 环境科学与管理, 2019, 44(10): 54
20 Sánchez-Moreno M, Takenouti H, García-Jareño J J, et al. A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media [J]. Electrochim. Acta, 2009, 54: 7222
21 Dong C F, Li X G, Wu J W, et al. Review in experimentation and data processing of soil corrosion [J]. Corros. Sci. Prot. Technol., 2003, 15: 154
董超芳, 李晓刚, 武俊伟等. 土壤腐蚀的实验研究与数据处理 [J]. 腐蚀科学与防护技术, 2003, 15: 154
22 Mundra S, Criado M, Bernal S A, et al. Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes [J]. Cem. Concr. Res., 2017, 100: 385
[1] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[2] CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[3] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[4] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[5] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[6] Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[7] Tao HUANG,Xiaoping CHEN,Xiangdong WANG,Fengyi MI,Rui LIU,Xiangyang LI. Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[8] Zhian DENG,Shuyi LI,Xiaokun LI,Shan WANG,Xiaojun WANG. A Prediction Method Based on Fuzzy Neural Network for Corrosion Rate of Marine Pipelines[J]. 中国腐蚀与防护学报, 2015, 35(6): 571-576.
[9] YAO Huiping, YAN Maocheng, YANG Xu, SUN Cheng. Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
[10] FENG Yong,HE Deliang,GONG Desheng,LI Fei,WU Jianxin. Corrosion Resistance Properties of Domestic 825 Alloy[J]. 中国腐蚀与防护学报, 2013, 33(2): 164-170.
[11] ZOU Guanchi,SHEN Hanjie,LI Chenglin,YONG Xingyue. Establishment and Experimental Verification of Hydrodynamic Model for Impingement Corrosion Apparatus[J]. 中国腐蚀与防护学报, 2013, 33(1): 47-53.
[12] HUANG Bensheng, JIANG Zhongying, PAN Huanhuan, YUAN Pengbin, LIU Qingyou. INFLUENCE OF DIFFERENT HEAT TREATMENT ON CORROSION RESISTANCE OF G105 PIPE[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[13] NIE Xianghui, LI Xiaogang, LI Yunlong, LI Jike, ZHANG Hongbo. ACCELERATION RATIOS AND DYNAMIC CORRELATION EXPERIMENTS ON THE CORROSION LOSS OF Q235 STEEL IN SEASHORE SOIL[J]. 中国腐蚀与防护学报, 2011, 31(3): 208-213.
[14] MA Ying, FENG Junyan, MA Yuezhou, ZHAN Hua,GAO Wei. COMPARATIVE STUDY ON CHARACTERIZATION OF CORROSION RESISTANCE OF MICRO-ARC OXIDATION COATINGS ON MAGNESIUM ALLOYS[J]. 中国腐蚀与防护学报, 2010, 30(6): 442-448.
[15] HUANG Jiayi QIU Yubing GUO Xingpeng. CLUSTER ANALYSIS OF ELECTROCHEMICAL NOISE FOR X70 STEEL IN KU'ERLE SOIL[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.
[1] Li Jinfeng; Cao Fahe; Zhang Zhao; Cheng Yingliang; Zhang Jianqing; Cao Chu'nan. Review on Exfoliation Susceptibility of Aluminium Alloys and Quantitative Measurement Method[J]. J Chin Soc Corr Pro, 2004, 24(1): 55 -64 .
[2] Shouyan Wang. CONSULTATION AND FORECAST DIAGNOSIS SYSTEM OF METAL IN MARINE ENVIRONMENT[J]. J Chin Soc Corr Pro, 2004, 24(2): 108 -111 .
[3] Xinkuai He. The Present Situation and the Development of Vapor Phase Inhibitor[J]. J Chin Soc Corr Pro, 2004, 24(4): 245 -248 .
[4] Fengzheng Li. CURRENT DISTRIBUTION IN A CATHODICALLY PROTECTED CREVICE[J]. J Chin Soc Corr Pro, 2000, 20(6): 338 -343 .