Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 517-522    DOI: 10.11902/1005.4537.2019.145
Current Issue | Archive | Adv Search |
Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater
ZHANG Hao, DU Nan(), ZHOU Wenjie, WANG Shuaixing, ZHAO Qing
National Defense Key Discipline Laboratory of Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(4237KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 304 stainless steel in acidic FeCl3 solution was studied by linear sweep voltammetry and cyclic voltammetry. The results show that the free-corrosion potential of 304 stainless steel shifts positively and the free-corrosion current density increases with the increase of Fe3+ concentration at the same pH and Cl- concentration. When 304 stainless steel is corroded in acidic Fe3+ solution, the free-corrosion potential of stainless steel is positively shifted due to the presence of Fe3+ reduction reaction, which makes it difficult for H+ reduction reaction to carry out on the electrode surface. When Fe3+ content is sufficient, the cathodic reaction in stainless steel corrosion process is mainly Fe3+ reduction reaction, not H+ depolarization reaction. Therefore, it should be fully considered the effect of Fe3+ on pits growth in the study of pitting corrosion behavior of stainless steel.

Key words:  304 stainless steel      pitting corrosion      cyclic voltammetry      linear sweep voltammetry      Fe3+ reduction reaction     
Received:  10 September 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51561024)
Corresponding Authors:  DU Nan     E-mail:  d_nan@sina.com

Cite this article: 

ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 517-522.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.145     OR     https://www.jcscp.org/EN/Y2020/V40/I6/517

No.CompositionpH
10.100 mol/L FeCl23.37, untreated
20.001 mol/L FeCl3+0.297 mol/L NaCl3.34→1.64, varied
30.010 mol/L FeCl3+0.270 mol/L NaCl2.33→1.64, varied
40.025 mol/L FeCl3+0.225 mol/L NaCl2.13→1.64, varied
50.100 mol/L FeCl31.64, untreated
Table 1  Compositions and pH values of test solutions
Fig.1  Potentiodynamic polarization curves of 304 stainless steel in the solutions with different concentrations of Fe3+ (pH=1.64, CCl-=0.3 mol/L)
CFe3+ / mol/LEcorr / mVIcorr / μA·cm-2
0.001-329.10.42
0.010-119.10.73
0.025-65.41.79
0.10065.514.91
Table 2  Fitting results of potentiodynamic polarization curves of 304 stainless steel in the solutions with different concentrations of Fe3+
Fig.2  Corrosion morphologies of 304 stainless steel after polarization in 0.001 mol/L (a), 0.010 mol/L (b), 0.025 mol/L (c) and 0.100 mol/L (d) Fe3+ solutions (pH=1.64, CCl-=0.3 mol/L)
Fig.3  Cyclic voltammetry curves of GCE in 0.100 mol/L FeCl3 solution
Fig.4  Potentiodynamic polarization curves of 304 stainless steel in 0.100 mol/L FeCl3 solution and 0.100 mol/L FeCl2 solution
Fig.5  Diagram of pit growth
[1] Tian W M, Li S M, Du N, et al. Effects of applied potential on stable pitting of 304 stainless steel [J]. Corros. Sci., 2015, 93: 242
doi: 10.1016/j.corsci.2015.01.034
[2] Tian W M, Ai Y J, Li S M, et al. Pitting kinetics of 304 stainless steel using ESPI detection technique [J]. Acta Metall. Sin., 2015, 28: 430
doi: 10.1007/s40195-015-0213-0
[3] Du N, Ye C, Tian W M, et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy [J]. J. Mater. Eng., 2014, (6): 68
(杜楠, 叶超, 田文明等. 304不锈钢点蚀行为的电化学阻抗谱研究 [J]. 材料工程, 2014, (6): 68)
[4] Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885
[5] Liu D X. Corrosion and Protection of Materical [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 78
(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 78)
[6] Hu Y B, Dong C F, Sun M, et al. Effects of solution pH and Cl- on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments [J]. Corros. Sci., 2011, 53: 4159
[7] Liu S Y, Wang S X, Du N, et al. Electrochemical behavior of X80 pipeline steel in simulated red soil solutions with different pH [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 21
(刘淑云, 王帅星, 杜楠等. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为 [J]. 中国腐蚀与防护学报, 2015, 35: 21)
doi: 10.11902/1005.4537.2013.241
[8] Wang S X, Liu D X, Du N, et al. Cathodic reactions involved in the corrosion of X80 steel in acidic soil simulated solution [J]. Int. J. Electrochem. Sci., 2016, 11: 8797
[9] Liu X J, Spikes H, Wong J S S. In situ pH responsive fluorescent probing of localized iron corrosion [J]. Corros. Sci., 2014, 87: 118
doi: 10.1016/j.corsci.2014.06.016
[10] Wang M F, Li X G, Du N, et al. Direct evidence of initial pitting corrosion [J]. Electrochem. Commun., 2008, 10: 1000
doi: 10.1016/j.elecom.2008.04.032
[11] Huang S X, Du N, Zhao Q, et al. Fe3+ Hydrolysis and its impact on the pitting behavior of 304 stainless steel [J]. Corros. Prot., 2016, 37: 453
(黄世新, 杜楠, 赵晴等. Fe3+水解及其对304不锈钢点蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 453)
[12] Nazarnezhad-Bajestani M, Neshati J, Siadati M H. Determination of SS321 pitting stage in FeCl3 solution based on electrochemical noise measurement data using artificial neural network [J]. J. Electroanal. Chem., 2019, 845: 31
doi: 10.1016/j.jelechem.2019.05.036
[13] Orlikowski J, Jazdzewska A, Mazur R, et al. Determination of pitting corrosion stage of stainless steel by galvanodynamic impedance spectroscopy [J]. Electrochim. Acta, 2017, 253: 403
doi: 10.1016/j.electacta.2017.09.047
[14] State Bureau of Quality and Technical Supervision. GB/T 17897-1999 Test of pitting corrosion resistance of stainless steels in the ferric chloride solution [S]. Beijing: China Standard Press, 2000
(国家质量技术监督局. GB/T 17897-1999 不锈钢三氯化铁点腐蚀试验方法 [S]. 北京: 中国标准出版社, 2000)
[15] Li X Y, Fan C H, Wu Q L, et al. Effect of solution pH, Cl- concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments [J]. J. Iron Steel Res. Int., 2017, 24: 1238
doi: 10.1016/S1006-706X(18)30023-2
[16] Jiang X, Nešić S, Kinsella B, et al. Electrochemical investigation of the role of Cl- on localized carbon dioxide corrosion behavior of mild steel [J]. Corrosion, 2013, 69: 15
doi: 10.5006/0620
[17] Zheng S Q, Chen S, Qi Y M, et al. Effect of Cl- concentration on mechanical properties of 316L stainless steel in H2S/CO2 environments [J]. Metallofiz. Noveĭshie Tekhnol., 2012, 34: 1431
[18] Liu S A, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution [J]. Corros. Sci., 2012, 65: 520
doi: 10.1016/j.corsci.2012.08.056
[19] Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd Ed. Beijing: Chemical Industey, 2004: 75
(曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004: 75)
[20] Ai Y J. Study on the pitting process of 304 stainless steel in 35% NaCl solution by electrochemical methods [D]. Nanchang: Nanchang Hangkong University, 2016
(艾莹珺. 304不锈钢在35%NaCl溶液中点蚀过程的电化学研究3 [D]. 南昌: 南昌航空大学, 2016)
[21] Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
pmid: 11845203
[22] Stratmann M, Müller J. The mechanism of the oxygen reduction on rust-covered metal substrates [J]. Corros. Sci., 1994, 36: 327
doi: 10.1016/0010-938X(94)90161-9
[23] Popov Y A, Koval'chukov N A, Rybakov Y P. Role of the interaction of corrosion pittings in the dynamics of their evolution [J]. Russ. J. Phys. Chem., 2006, 80: 1504
doi: 10.1134/S0036024406090251
[24] Zhang P Q, Wu J X, Zhang W Q, et al. A pitting mechanism for passive 304 stainless steel in sulphuric acid media containing chloride ions [J]. Corros. Sci., 1993, 34: 1343
doi: 10.1016/0010-938X(93)90091-T
[25] Gao J, Jiang Y M, Deng B, et al. Determination of pitting initiation of duplex stainless steel using potentiostatic pulse technique [J]. Electrochim. Acta, 2010, 55: 4837
doi: 10.1016/j.electacta.2010.02.035
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[3] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[5] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[6] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[7] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[8] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[9] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[10] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[11] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[12] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[13] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[14] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[15] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
No Suggested Reading articles found!