Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 101-109    DOI: 10.11902/1005.4537.2020.216
Current Issue | Archive | Adv Search |
Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy
YU Hongfei1,2, SHAO Bo3, ZHANG Yue1, YANG Yange2()
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Ansteel Engineering Technology Co. , Ltd. , Anshan 114021, China
Download:  HTML  PDF(17317KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A Cr-free Zr-based conversion coating (ZrCC) was prepared on 2A12 Al-alloy, which then was characterized in terms of the surface micromorphology evolution and composition of 2A12 Al-alloy during pretreatment and conversion process, especially, the influence of the second phase of the alloy on the conversion process. The results show that first, the pretreatment process resulted in a very rough surface of the 2A12 Al-alloy, on which there exist many pits and residual second phases; next, the second phase particulates in 2A12 Al-alloy were unfavorable to the uniform nucleation and growth of conversion coating granulates during conversion process; and third, after conversion process, the second phase particulates on the 2A12 Al-alloy surface were seriously destroyed, that brough strong impact on the compactness and uniformity of the coating.

Key words:  conversion coating      Zr-based      aluminium Al-alloy      corrosion      second phase     
Received:  27 October 2020     
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2019YFC0312100);Civil Aircraft Special Scientific;Research Project(MJ-2017-J-99)
Corresponding Authors:  YANG Yange     E-mail:  ygyang@imr.ac.cn

Cite this article: 

YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 101-109.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.216     OR     https://www.jcscp.org/EN/Y2021/V41/I1/101

Fig.1  Polarization curves of bare 2A12 and Zr-based conv-ersion coating
Fig.2  Nyquist plot (a) and Bode plot (b) of bare 2A12 Al-alloy and ZrCC
Fig.3  EIS equivalent circuit of bare 2A12 Al-alloy and ZrCC
MaterialRs / Ω·cm2Y0 / Ω-1·cm-2·s-1nRf / Ω·cm2Y0 / Ω-1·cm-2·s-1nRct / Ω·cm2
Bare15.212.696×10-50.933235321.266×10-40.83782.064×104
ZrCC15.462.325×10-40.816818487.387×10-40.9787574.9
Table 1  Electrochemical fitting parameters of bare 2A12 Al-alloy and ZrCC
Fig.4  SEM micrograph and EDS mapping scans of 2A12 aluminium alloy: (a) substrate, (b) Al, (c) Cu, (d) Fe, (e) Mg, (f) Mn
Fig.5  Micrographs among pretreatment: (a) alkaline cleaning, (b) acid cleaning
Fig.6  EDS results of different position after acid pickling: (a) substrate, (b) position 1, (c) position 2, (d) position 3
Fig.7  OCP curve of 2A12 aluminium alloy immersed in the zirconium-based conversion bath as function vs the immersion time
Fig.8  SEM morphologies of ZrCC formed on 2A12 aluminium alloy after different immersion time in the conversion bath: (a1, a2) 75 s, (b1, b2) 175 s, (c1, c2) 270 s, (d1, d2) 1030 s, (e1, e2) 1800 s
Fig.9  SEM surface (a) and cross section (b) micrographs after conversion process
PositionFNaAlCuFeMnPZrMg
428.4210.0545.666.61---0.260.371.290.81
55.751.2657.273.77---------5.041.28
611.357.2830.9632.44---------3.96128
Table 2  Composition of surface and cross section of ZrCC by EDS (mass fraction / %)
Fig.10  Survey XPS spectra of ZrCC on 2A12 aluminium alloy
Fig.11  High resolution XPS spectra of different element of ZrCC on 2A12 aluminium alloy: (a) Al 2p, (b) F 1s, (c) Na 1s, (d) P 2P, (e) Zr 3d, (f) O 1s
1 Bethencourt M, Botana F J, Cano M J, et al. Behaviour of the alloy AA2017 in aqueous solutions of NaCl. Part I: Corrosion mechanisms [J]. Corros. Sci., 2009, 51: 518
2 Boag A, Taylor R J, Muster T H, et al. Stable pit formation on AA2024-T3 in a NaCl environment [J]. Corros. Sci., 2010, 52: 90
3 Boag A, Hughes A E, Wilson N C, et al. How complex is the microstructure of AA2024-T3? [J]. Corros. Sci., 2009, 51: 1565
4 Din R U, Bordo K, Jellesen M S, et al. Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance [J]. Surf. Coat. Technol., 2015, 276: 106
5 Li S H, Yin Y J, Liu J R, et al. Surface treatment and its application to aluminum and aluminum alloy [J]. Spec. Cast. Nonferrous Alloys, 2001, (2): 54
李淑华, 尹玉军, 刘家儒等. 铝及铝合金的表面处理及应用 [J]. 特种铸造及有色合金, 2001, (2): 54
6 Li H, Wang M L. The process research to the chemical conversion film of aluminium [J]. Mod. Paint Finish., 2010, 13(3): 64
李航, 王明磊. 铝材的化学转化膜工艺探讨 [J]. 现代涂料与涂装, 2010, 13(3): 64
7 Liu Y, Skeldon P, Thompson G E, et al. Chromate conversion coatings on aluminium-copper alloys [J]. Corros. Sci., 2005, 47: 341
8 Campestrini P, Terryn H, Vereecken J, et al. Chromate conversion coating on aluminum alloys: III. Corrosion protection [J]. J. Electrochem. Soc., 2004, 151: B370
9 Zhao J, Xia L, Sehgal A, et al. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3 [J]. Surf. Coat. Technol., 2001, 140: 51
10 Verdalet-Guardiola X, Fori B, Bonino J P, et al. Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy [J]. Corros. Sci., 2019, 155: 109
11 Campestrini P, van Westing E P M, de Wit J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: Nucleation and growth [J]. Electrochim. Acta, 2001, 46: 2553
12 Long Z L, Zhou Y C, Xiao L. Characterization of black chromate conversion coating on the electrodeposited zinc-iron alloy [J]. Appl. Surf. Sci., 2003, 218: 124
13 Brown G M, Shimizu K, Kobayashi K, et al. The development of chemical conversion coatings on aluminium [J]. Corros. Sci., 1993, 35: 253
14 Brown G M, Shimizu K, Kobayashi K, et al. The morphology, structure and mechanism of growth of chemical conversion coatings on aluminium [J]. Corros. Sci., 1992, 33: 1371
15 Chidambaram D, Clayton C R, Halada G P. The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys [J]. Electrochim. Acta, 2006, 51: 2862
16 Hinton B R W, Wilson L. The corrosion inhibition of zinc with cerous chloride [J]. Corros. Sci., 1989, 29: 967
17 Yoganandan G, Premkumar K P, Balaraju J N. Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy [J]. Surf. Coat. Technol., 2015, 270: 249
18 Bethencourt M, Botana F J, Cano M J, et al. High protective, environmental friendly and short-time developed conversion coatings for aluminium alloys [J]. Appl. Surf. Sci., 2002, 189: 162
19 Swain G M, Li L L. Formation and structure of trivalent chromium process coatings on aluminum alloys 6061 and 7075 [J]. Corrosion, 2013, 89: 1205
20 Guo Y, Frankel G S. Characterization of trivalent chromium process coating on AA2024-T3 [J]. Surf. Coat. Technol., 2012, 206: 3895
21 Saillard R, Viguier B, Odemer G, et al. Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer [J]. Corros. Sci., 2018, 142: 119
22 Viroulaud R, Światowska J, Seyeux A, et al. Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy [J]. Appl. Surf. Sci., 2017, 423: 927
23 Lunder O, Simensen C, Yu Y, et al. Formation and characterisation of Ti–Zr based conversion layers on AA6060 aluminium [J]. Surf. Coat. Technol., 2004, 184: 278
24 George F O, Skeldon P, Thompson G E. Formation of zirconium-based conversion coatings on aluminium and Al-Cu alloys [J]. Corros. Sci., 2012, 65: 231
25 Coloma P S, Izagirre U, Belaustegi Y, et al. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications [J]. Appl. Surf. Sci., 2015, 345: 24
26 Milošev I, Frankel G S. Review—conversion coatings based on zirconium and/or titanium [J]. J. Electrochem. Soc., 2018, 165: C127
27 Liu Y, Yang Y G, Zhang C Y, et al. Protection of AA5083 by a zirconium-based conversion coating [J]. J. Electrochem. Soc., 2016, 163: C576
28 Hosseini R M, Sarabi A A, Mohammadloo H E, et al. The performance improvement of Zr conversion coating through Mn incorporation: With and without organic coating [J]. Surf. Coat. Technol., 2014, 258: 437
29 Zhan W, Qian X Z, Gui B Y, et al. Preparation and corrosion resistance of titanium-zirconium-cerium based conversion coating on 6061 aluminum alloy [J]. Mater. Corros., 2020, 71: 419
30 Chen X M, Li G Y, Lian J S, et al. An organic chromium-free conversion coating on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2008, 255: 2322
31 Li L L, Whitman B W, Munson C A, et al. Structure and corrosion performance of a non-chromium process (NCP) Zr/Zn pretreatment conversion coating on aluminum alloys [J]. J. Electrochem. Soc., 2016, 163: C718
32 Li L L, Whitman B W, Swain G M. Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3 [J]. J. Electrochem. Soc., 2015, 162: C279
33 Carreira A F, Pereira A M, Vaz E P, et al. Alternative corrosion protection pretreatments for aluminum alloys [J]. J. Coat. Technol. Res., 2017, 14: 879
34 Golru S S, Attar M M, Ramezanzadeh B. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating [J]. Appl. Surf. Sci., 2015, 345: 360
[1] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[2] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[3] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[4] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[5] WANG Yongxiang, HE Bolin, LI Li. Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[6] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[7] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[8] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[9] YAN Zhu, ZHANG Chenyang, WANG Lixin, YUAN Guo, ZHANG Yuanxiang, FANG Feng, WANG Yang, KANG Jian. Effect of Structural Stability on Electrochemical Corrosion Properties of Zr-based Amorphous Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[10] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[11] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[12] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[13] LIU Dong, LIU Jing, HUANG Feng, DU Liying, PENG Wenjie. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[14] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[15] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.