Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 51-59    DOI: 10.11902/1005.4537.2020.175
Current Issue | Archive | Adv Search |
Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions
RAN Dou1,2, MENG Huimin1, LIU Xing1,2, LI Quande1,2,3(), GONG Xiufang2,3, NI Rong2,3, JIANG Ying2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3()
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. , LTD. , Deyang 618000, China
Download:  HTML  PDF(4871KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pH value on the electrochemical corrosion behavior of 14Cr12Ni3WMoV steel, which is often used for steam turbine final blade, in acidic chlorine-containing solutions was investigated by open circuit potential measurement, potentiodynamic polarization, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that with the decrease of pH value of acidic chlorine-containing solutions, the impedance of the steel surface decreases, while the corrosion rate and pitting sensitivity increase. When pitting occurs, the vertical growth of pits on the steel surface slowed down, while their lateral growth accelerated without obvious uniform corrosion. The passivation film of 14Cr12Ni3WMoV stainless steel is mainly composed of oxides and hydroxides of Fe and Cr in the solution of pH5, while the passivation film is mainly composed of hydroxides and oxides of Cr and corresponding compounds of high valence state Mo6+ in the solution of pH2. With the decrease in pH value of the acidic chlorine-containing solution, the dissolution of Fe in the passivation film on the steel is accelerated significantly, so that the stability of the passivation film decreases, thereby the corrosion resistance of the stainless steel decreases.

Key words:  electrochemistry corrosion      stainless steel      steam turbine blade      pH      passivation film      pitting corrosion     
Received:  25 September 2020     
ZTFLH:  TG172  
Fund: Sichuan Applied Foundation Project(2019YJ0699);Project of State Key Laboratory of Long-life;High Temperature Materials(DTCC28EE190230)
Corresponding Authors:  LI Quande,LONG Bin     E-mail:  quandelee@126.com;longbin@dongfang.com

Cite this article: 

RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 51-59.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.175     OR     https://www.jcscp.org/EN/Y2021/V41/I1/51

Fig.1  Open circuit potentials for 14Cr12Ni3WMoV stainless steel in 0.1 mol/LNaCl solution at different pH
Fig.2  Cyclic polarization curves (a) and pitting potential (b) of 14Cr12Ni3WMoV stainless steel in 0.1 mol/L NaCl solution at different pH
pHEcorr vs SCE / VIcorr / A·cm-2Eb vs SCE / V
2-0.4413.42×10-6-0.052
3-0.5050.55×10-60.164
4-0.4220.38×10-60.198
5-0.3540.25×10-60.226
Table 1  Electrochemical parameters of 14Cr12Ni3WMoV stainless steel in 0.1 mol/L NaCl solution at different pH
Fig.3  Nyquist plots (a) and Bode plots (b) of 14Cr12Ni3-WMoV stainless steel in 0.1 mol/L NaCl solution at different pH
Fig.4  Equivalent circuit used for modeling
pHRs / Ω·cm2QfRf / Ω·cm2
Y0 / Ω-1·cm-2·Snn
272.16.91×10-40.851.36×104
373.21.63×10-40.851.65×105
472.61.76×10-40.862.62×105
574.73.97×10-50.941.16×106
Table 2  Parameters of the equivalent circuit
Fig.5  Corrosion morphologies (a1~d1) 3D morphologies (a2~d2) of 14Cr12Ni3WMoV stainless steel in 0.1 mol/L NaCl solution at pH2 (a1, a2), pH3 (b1, b2), pH4 (c1, c2) and pH5 (d1, d2)
Fig.6  Depth and aperture of the pitting of 14Cr12Ni3-WMoV stainless steel in 0.1 mol/L NaCl solution at different pH
Fig.7  XPS spectra of passive film formed on 14Cr12Ni3WMoV stainless steel after immersion in 0.1 mol/L NaCl solution with pH5 for 72 h: (a) Fe 2p3/2, (b) Cr 2p3/2, (c) Mo 3d, (d) W 4f
ElementPeakSpecies/binding energy
Fe2p3/2Fe/706.5 eV; FeO/709.9 eV; Fe3O4/708.2 eV; Fe2O3/711.5 eV; FeOOH/712 eV
Cr2p3/2Cr/573.8 eV; Cr2O3/576.0 eV; Cr(OH)3/577.0 eV; CrO3/578.3 eV
Mo3d5/2Mo/227.4 eV; Mo4+/228.8 eV; Mo6+/232.3 eV
3d3/2Mo/231.1 eV; Mo4+/234.2 eV;Mo6+/235.6 eV
W4f7/2W/31.0 eV; W6+/35.2 eV
4f5/2W/33.6 eV; W6+/37.4 eV
Table 3  Binding energies of the primary compounds of passive film
Fig.8  XPS spectra of passive film formed on 14Cr12Ni3WMoV stainless steel after immersion in 0.1 mol/L NaCl solution with pH2 for 72 h: (a) Fe 2p3/2, (b) Cr 2p3/2, (c) Mo 3d, (d) W 4f
Fig.9  Elemental percent of passive film formed on 14Cr12Ni3WMoV stainless steel after immersion in 0.1 mol/L NaCl solution with pH2 and pH5 for 72 h
1 Zhou J Y. Corrosion causes analysis and surface protection treatment of low-pressure final stage steam turbine blades [J]. New Technol. New Prod. China, 2009, (13): 112
周景云. 汽轮机低压末级叶片腐蚀原因分析及其表面防护处理 [J]. 中国新技术新产品, 2009, (13): 112
2 Wang F T, Wang N N, Chang L, et al. Corrosion characteristic of steam turbine blade 1Cr13 steel in simulated initial-condensate water [J]. Corros. Prot., 2018, 39: 489
王锋涛, 王娜娜, 常亮等. 汽轮机叶片用1Cr13钢在初凝水中的腐蚀特性 [J]. 腐蚀与防护, 2018, 39: 489
3 Hu P. Development of anti-erosion surface treatments used in last blades of steam turbine [J]. Surf. Technol., 2008, 37(6): 78
胡平. 汽轮机末级叶片表面防水蚀处理工艺及发展 [J]. 表面技术, 2008, 37(6): 78
4 Zhou W Y, Zhu Z X, Wang P, et al. Analysis on water-erosion of moving blade in low-pressure control stage of a steam turbine [J]. Corros. Prot. Petrochem. Ind., 2012, 29(6): 43
周文远, 朱正写, 王鹏等. 汽轮机低压调节级动叶片水蚀分析 [J]. 石油化工腐蚀与防护, 2012, 29(6): 43
5 Li H P. Fracture mechanism analysis of steam turbine blade [J]. Equip. Manuf. Technol., 2016, (6): 205
李海鹏. 汽轮机叶片断裂机理分析 [J]. 装备制造技术, 2016, (6): 205
6 Adnyana D N. Corrosion fatigue of a low-pressure steam turbine blade [J]. J. Fail. Anal. Prev., 2018, 18: 162
7 Katinić M, Kozak D, Gelo I, et al. Corrosion fatigue failure of steam turbine moving blades: A case study [J]. Eng. Fail. Anal., 2019, 106: 104136
8 Fu X X, Zhang M, Lu L L. Analysis on fracture reasons of steam turbine blades [J]. Phys. Test. Chem. Anal. (Part A: Phys. Test.), 2017, 53: 812
付星星, 张梅, 卢柳林. 汽轮机叶片断裂原因分析 [J]. 理化检验 (物理分册), 2017, 53: 812
9 Kim H. Crack evaluation of the fourth stage blade in a low-pressure steam turbine [J]. Eng. Fail. Anal., 2011, 18: 907
10 Zhang T, Tian F, He F X, et al. Failure analysis of low-pressure rotor blade of 300 mw steam turbine [J]. Inner Mongolia Electr. Power, 2014, 32(5): 41
张涛, 田峰, 贺飞雄等. 300 MW汽轮机低压转子动叶片断裂分析 [J]. 内蒙古电力技术, 2014, 32(5): 41
11 Stefanoni M, Angst U, Elsener B. Local electrochemistry of reinforcement steel-Distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
12 Arjmand F, Zhang L F, Wang J M. Effect of temperature, chloride and dissolved oxygen concentration on the open circuit and transpassive potential values of 316L stainless steel at high-temperature pressurized water [J]. Nucl. Eng. Des., 2017, 322: 215
13 Rui J Q, Li J, Sun H D, et al. Influence of pH on the electrochemical bahavior of 00Cr15Ni7Mo2Cu2 supermartensitic stainless steel in 3.5%NaCl solutions [J]. Adv. Mater. Res., 2012, 581/582: 1058
14 Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media [J]. Materialia, 2018, 2: 111
15 Wang Y F, Xie F Q. Corrosion behaviors of super 13Cr tubing steels in NaCl solution with different concentration [J]. Mater. Rev., 2018, 32: 2847
王毅飞, 谢发勤. 超级13Cr油管钢在不同浓度Cl介质中的腐蚀行为 [J]. 材料导报, 2018, 32: 2847
16 Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
王标, 杜楠, 张浩等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338
17 Ai Y J, Du N, Zhao Q, et al. Effect of temperature on initiation of metastable pits and geometric features of stable pits for 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 135
艾莹珺, 杜楠, 赵晴等. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 135
18 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
19 Wang Z, Feng Z, Zhang L, et al. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels [J]. Chin. J. Eng., 2020, 42: 549
王竹, 冯喆, 张雷等. 电化学方法在不锈钢腐蚀研究中的应用现状及发展趋势 [J]. 工程科学学报, 2020, 42: 549
20 Wang Z. Investigation of the corrosion behavior and passive film degradation for austenitic stainless steel in H2S-containing environment [D]. Beijing: University of Science and Technology Beijing, 2018
王竹. 奥氏体不锈钢在H2S环境下的腐蚀行为与钝化膜演化研究 [D]. 北京: 北京科技大学, 2018
21 Lv N X, Liu K P, Yin C X, et al. Effect of HCO3- on passivation and pitting behavior of super 13Cr martensitic stainless steel [J]. Surf. Technol., 2019, 48(5): 36
吕乃欣, 刘开平, 尹成先等. HCO3-对超级13Cr马氏体不锈钢钝化行为及点蚀行为的影响 [J]. 表面技术, 2019, 48(5): 36
22 Popova A, Sokolova E, Raicheva S, et al. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives [J]. Corros. Sci., 2003, 45: 33
23 Sun M, Xiao K, Dong C F, et al. Effect of pH on semiconducting property of passive film formed on Ultra-High-Strength Corrosion-Resistant steel in sulfuric acid solution [J]. Metall. Mater. Trans., 2013, 44A: 4709
24 Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
25 Guo L Q, Lin M C, Qiao L J, et al. Duplex stainless steel passive film electrical properties studied by in situ current sensing atomic force microscopy [J]. Corros. Sci., 2014, 78: 55
26 Guo Q, Liu J H, Yu M, et al. Effect of passive film on mechanical properties of martensitic stainless steel 15-5PH in a neutral NaCl solution [J]. Appl. Surf. Sci., 2015, 327: 313
27 Fan X H, Yu Y, Zhang Z R, et al. Pitting and repassivation behavior of 316l austenitic stainless steel under different potentials [J]. Surf. Technol., 2020, 49(7): 287
樊学华, 于勇, 张子如等. 316L奥氏体不锈钢在不同电位下的点蚀和再钝化行为研究 [J]. 表面技术,2020, 49(7): 287
[1] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[2] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[3] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[4] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[5] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[6] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[7] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[8] YAN Zhu, ZHANG Chenyang, WANG Lixin, YUAN Guo, ZHANG Yuanxiang, FANG Feng, WANG Yang, KANG Jian. Effect of Structural Stability on Electrochemical Corrosion Properties of Zr-based Amorphous Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[9] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[10] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[11] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[12] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[13] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[14] LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[15] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[1] Wang Yanhua; Zhang Tao; Wang jia; Wang Fuhui. Applications of Kelvin Probe Technique in the Studies of Atmospheric Corrosion[J]. J Chin Soc Corr Pro, 2004, 24(1): 59 -64 .
[2] Yuefei Zhang. High Temperature Oxidation Resistance of the Plasma Titanizing on Copper Surface by Double Glow Discharge[J]. J Chin Soc Corr Pro, 2004, 24(3): 139 -142 .
[3] Mingxing Li. CRACK PROPAGATION QUANTITATIVE MODELS OF X70 PIPELINE STEEL IN THE SYNTHETIC SOIL SOLUTION[J]. J Chin Soc Corr Pro, 2004, 24(3): 163 -167 .