Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 125-130    DOI: 10.11902/1005.4537.2020.009
Current Issue | Archive | Adv Search |
Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell
HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai()
Institute of Materials Technology, Dalian Maritime University, Dalian 116026, China
Download:  HTML  PDF(1300KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The operation efficiency of proton exchange membrane fuel cell (PEMFC) is primarily affected by the electrical conductivity, corrosion resistance and hydrophobicity of the bipolar plate. Zr coating (Zr-TA1) is prepared by double glow plasma method on TA1 commercial pure Ti-bipolar plate. Then the microstructure and properties of the Zr coated TA1 Ti-plate are studied. It follows that, the thickness of Zr coating is about 3 μm and the coating surface is smooth and compact. Its potentiodynamic/potentiostatic polarization curves are measured in the cathodic and anodic environments of PEMFC, which shows that the corrosion potential of Zr-TA1 is increased significantly and the corrosion current density is decreased by 1~2 orders of magnitude in comparison with the bare TA1 Ti-plate. Furthermore, the hydrophobicity of TA1 is improved by Zr coating and the water contact angle is increased from 71o (TA1) to 94o (Zr-TA1). In addition, the contact resistance of Zr-TA1 (under the compaction pressure of 140 N·cm-2) is decreased from 117.3 mΩ·cm2 to 15.5 mΩ·cm2, namely, the surface conductivity of the Ti-plate was significantly improved.

Key words:  proton exchange membrane fuel cell      Ti bipolar plate      Zr coating      interfacial contact resistance      corrosion resistance     
Received:  14 January 2020     
ZTFLH:  TG172  
Fund: National Key R&D Program of China(2016YFB0101206)
Corresponding Authors:  SUN Juncai     E-mail:  sunjc@dlmu.edu.cn

Cite this article: 

HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 125-130.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.009     OR     https://www.jcscp.org/EN/Y2021/V41/I1/125

Fig.1  XRD pattern of Zr-TA1 surface
Fig.2  Surface morphology of Zr-TA1 (a) and cross section morphology and EDS analysis of Zr-TA1 (b)
Fig.3  Potentiodynamic polarization curves for the Zr-TA1 and uncoated TA1 plate in simulated PEMFCs cathodic (a) and anodic (b) environment
SampleCathodeAnode
Ecorr / VSCEIcorr / μA·cm-20.6 V / A·cm-2Ecorr / VSCEIcorr / μA·cm-2-0.1 V/ A·cm-2
TA1-0.19319.352.91×10-4-0.17810.061.96×10-5
Zr-TA10.0921.132.99×10-50.1010.82---
Table 1  Corrosion parameters of Zr-TA1 and uncoated TA1 bipolar plate polarized in simulated PEMFC cathodic/anodic environment
Fig.4  Potentiostatic polarization curves of Zr-TA1 and uncoated TA1 plate in simulated PEMFC cathodic (a) and anodic (b) environment
Fig.5  Water contact angle of uncoated TA1 (a) and Zr-TA1 bipolar plate (b)
Fig.6  ICR of uncoated TA1 (a) and Zr-TA1 bipolar plate (b) before and after potentiostatic polarization experiment in different simulated PEMFC environments
1 Zhao Q P, Mu Z X, Zhang B, et al. Research progress of bipolar plate material for proton exchange membrane fuel cell [J]. New Chem. Mater., 2019, 47(11): 52
赵秋萍, 牟志星, 张斌等. 质子交换膜燃料电池双极板材料研究进展 [J]. 化工新型材料, 2019, 47(11): 52
2 Cao C H, Liang C H, Huang N B. Electrochemical characteristic of stainless steel bipolar plates deposited with niobium [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 123
曹彩红, 梁成浩, 黄乃宝. 镀铌不锈钢双极板的电化学性能 [J]. 中国腐蚀与防护学报, 2013, 33: 123
3 Ghorbani M M, Taherian R, Bozorg M. Investigation on physical and electrochemical properties of TiN-coated Monel alloy used for bipolar plates of proton exchange membrane fuel cell [J]. Mater. Chem. Phys., 2019, 238: 121916
4 Song Y X, Zhang C Z, Ling C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energy, 2020, 45(54): 29832
5 Shen J, Liu W, Wang T G, et al. Corrosion and conductivity behavior of TiN coating on 304 stainless steel bipolar plates [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 63
沈杰, 刘卫, 王铁钢等. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 63
6 Gao Z Y, Huang N B, Shao Z G, et al. Research on surface modification of PEMFC titanium bipolar plate by NbN [J]. Chin. J. Power Sources, 2019, 43: 1690
高正远, 黄乃宝, 邵志刚等. PEMFC钛双极板表面NbN改性研究 [J]. 电源技术, 2019, 43: 1690
7 Wang Y, Northwood D O. An investigation on metallic bipolar plate corrosion in simulated Anode and Cathode environments of PEM fuel cells using potential-pH diagrams [J]. Int. J. Electrochem. Sci., 2006, 1: 447
8 Mandal P, Chanda U K, Roy S. A review of corrosion resistance method on stainless steel bipolar plate [J]. Mater. Today: Proc., 2018, 5: 17852
9 Asri N F, Husaini T, Sulong A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review [J]. Int. J. Hydrogen Energy, 2017, 42: 9135
10 Hao K G, Wu A M, Wang M C, et al. Surface modification of titanium-based fuel cell bipolar plate [J]. Batt. Bimonth., 2019, 49: 270
郝凯歌, 吴爱民, 王明超等. 燃料电池钛基金属双极板的表面改性 [J]. 电池, 2019, 49: 270
11 Xu J, Li Z Y, Xu S, et al. A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application [J]. J. Power Sources, 2015, 297: 359
12 Xu J, Huang H J, Li Z Y, et al. Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell [J]. J. Alloy. Compd., 2016, 663: 718
13 Qian Y, Xu J. Properties of Zr nanocrystalline coating on Ti alloy bipolar plates in simulated PEMFC environments [J]. Acta Phys.-Chim. Sin., 2015, 31: 291
钱阳, 徐江. 钛合金双极板表面纳米晶Zr涂层在质子交换膜燃料电池环境中的性能 [J]. 物理化学学报, 2015, 31: 291
14 Wang J B, Xie Z Y, Gao P P, et al. Corrosion protection of GO-PTFE-C composite coatings on Ti alloy plate [J]. Surf. Technol., 2019, 48(3): 149
王骏斌, 谢志勇, 高平平等. GO-PTFE-C涂层改性Ti金属板的防腐性能研究 [J]. 表面技术, 2019, 48(3): 149
15 Gao P P, Xie Z Y, Wu X B, et al. Development of Ti bipolar plates with carbon/PTFE/TiN composites coating for PEMFCs [J]. Int. J. Hydrogen Energy, 2018, 43: 20947
16 Wang J Y, Min L F, Fang F F, et al. Electrodeposition of graphene nano-thick coating for highly enhanced performance of titanium bipolar plates in fuel cells [J]. Int. J. Hydrogen Energy, 2019, 44: 16909
17 Wang H L, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2003, 115: 243
18 Fischer D A, Vargas I T, Pizarro G E, et al. The effect of scan rate on the precision of determining corrosion current by Tafel extrapolation: A numerical study on the example of pure Cu in chloride containing medium [J]. Electrochim. Acta, 2019, 313: 457
19 Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Eletrochim. Acta, 2014, 135: 526
20 Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol-water electrolytes [J]. Electrochim. Acta, 2012, 78: 65
21 Iranzo A, Gregorio J M. Ajusa Hydrogen Technologies develops novel bipolar plates with optimised water management for fuel cell stack [J]. Fuel Cells Bull., 2019, 2019(3): 15
22 Feng K, Li Z G, Lu F G, et al. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel [J]. J. Power Sources, 2014, 249: 299
[1] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[4] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[5] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[6] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[7] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[8] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[9] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[10] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[11] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[12] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[14] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[15] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.