Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 71-79    DOI: 10.11902/1005.4537.2019.270
Current Issue | Archive | Adv Search |
Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution
SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao()
School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Download:  HTML  PDF(4791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To improve the corrosion resistance of Ti-alloy applied to human implants, Nb coating was deposited on the surface of Ti-6Al-4V (TC4) alloy by double cathode plasma sputtering technique. The composition and the cross-sectional morphology of the coating were characterized by XRD, XPS and SEM. The electrochemical properties of the coating and the semiconductor properties of the passivation film for the coating and the substrate were studied in Ringer's simulated body solution at 37 ℃ by electrochemical workstation. The results show that the Nb coating exhibits a preferred orientation on the (200) crystal plane, and the coating thickness is about 18 μm without defects such as holes and cracks. The passive film on the Nb coating is mainly Nb2O5. Comparing with the TC4 substrate, the coating has higher open circuit potential (EOCP), corrosion potential (Ecorr) and lower corrosion current density (Icorr). Both of the TC4 alloys with and without Nb coating exhibit a single capacitance loop, however, the coated alloy exhibits higher impedance and lower effective capacitance rather than the substrate. The passivation films of two samples exhibit n-type semiconductor characteristics. By different formation potential (Ef), the flat band potential (Efb), the donor density (Nd) and diffusion coefficient (D0) of the passivation film on the coating are always lower than that on the bare TC4 alloy.

Key words:  Ti-6Al-4V alloy      Nb coating      corrosion resistance      passive film      semiconductor property     
Received:  19 December 2019     
ZTFLH:  TG174.445  
Fund: Graduate Innovative Fund of Wuhan Institute of Technology(CX2019242)
Corresponding Authors:  YU Chuanhao     E-mail:  yuchuanhaowh@126.com

Cite this article: 

SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 71-79.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.270     OR     https://www.jcscp.org/EN/Y2021/V41/I1/71

Fig.1  Typical XRD pattern of as-deposited Nb coating
Fig.2  SEM images of the cross section of the Nb coating (a) and enlarged view of the circle area in Fig.2a(b)
Fig.3  Open circuit potential vs time curves of the Nb coating and Ti-6Al-4V alloy in Ringer's solution at 37 ℃
Fig.4  Potentiodynamic polarization curves of the Nb coat-ing and Ti-6Al-4V alloy in Ringer's solution at 37 ℃
SampleEcorr / VIcorr / A·cm-2βa / V·dec-1-βc / V·dec-1Rp / 106 Ω·cm2Ip / A·cm-2
Ti-6Al-4V-0.6363.372×10-8228.154193.3491.0331.832×10-7
Nb coating-0.0437.865×10-9277.778130.3104.3944.030×10-8
Table 1  Electrochemical parameters collected from the polarization curves of the Nb coating and Ti-6Al-4V substrate in Ringer's solution at 37 ℃
Fig.5  Nyquist (a) and Bode (b) plots of the Nb coating and Ti-6Al-4V substrate in Ringer's solution at 37 ℃
Fig.6  Equivalent circuit diagram of EIS
SampleRs / Ω·cm2Q1 / Ω-1·cm-2·snn1R1 / Ω·cm2Q2 / Ω-1·cm-2·snn2R2 / Ω·cm2C2τχ2
Ti-6Al-4V46.321.27×10-50.726194.565.39×10-60.8494.29×1051.23×10-60.531.11×10-3
Nb coating48.956.38×10-60.796362.723.51×10-70.9744.57×1072.60×10-71.193.95×10-4
Table 2  Fitting parameters of EIS of the Nb coating and Ti-6Al-4V substrate in Ringer's solution at 37 ℃
Fig.7  General XPS spectrum (a) and fine spectra of Nb 3d (b) and O 1s (c) of the passive film formed on the Nb coating after potentiostatic polarization at 1.0 V for 1 h in Ringer's solution at 37 ℃
Fig.8  Mott-Schottky test results of the Nb coating (a) and TC4 substrate (b) in Ringer's solution at 37 °C
SampleNb coatingTi-6Al-4V
0.4 VEfb / V-1.540-1.122
Nd / 1016 cm-31.561405.933
0.6 VEfb / V-1.462-1.130
Nd / 1016 cm-31.337311.725
0.8 VEfb / V-1.406-1.116
Nd / 1016 cm-31.205267.045
1.0 VEfb / V-1.431-1.068
Nd / 1016 cm-31.092256.741
ω2 / cm-38.377×10152.440×1018
Iss / A·cm-28.32×10-86.03×10-7
εL / V ·cm-11.707×1082.551×106
D0 / cm2·s-12.430×10-154.045×10-15
Table 3  Capacitances of the passive films formed on the Nb coating and Ti-6Al-4V substrate in Ringer's solution at 37 ℃
Fig.9  Variations of donor density of the Nb coating (a) and Ti-6Al-4V substrate (b) with film-forming potential
Fig.10  Variations of capacitance and thickness of passivation films of the Nb coating and substrate with film-forming potential
1 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review [J]. Prog. Mater. Sci., 2009, 54: 397
2 Yan H M, Liu Y, Pang S J, et al. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions [J]. Rare Met., 2018, 37: 831
3 Wang H J, Wang J, Peng X, et al. Corrosion behavior of three titanium alloys in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 75
王海杰, 王佳, 彭欣等. 钛合金在3.5%NaCl溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 75
4 Liu L L, Xu J, Lu X L, et al. Electrochemical corrosion behavior of nanocrystalline β-Ta coating for biomedical applications [J]. ACS Biomater. Sci. Eng., 2016, 2: 579
5 Jin X D, Yang X K, Wei F R, et al. Research progress in surface modification materials and technologies of medical titanium and titanium alloys [J]. World Nonferrous Met., 2018, (07): 265
金旭丹, 杨晓康, 魏芬绒等. 医用钛及钛合金表面改性材料与技术研究进展 [J]. 世界有色金属, 2018, (07): 265
6 He L. Study on electrochemical properties of Ti-13Nb-13Zr alloy for implants [J]. Titanium Ind. Prog., 2014, 31(3): 43
何蕾. 植入物用Ti-13Nb-13Zr合金电化学性能的研究 [J]. 钛工业进展, 2014, 31(3): 43
7 Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
于振涛, 余森, 程军等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
8 Pauline S A, Rajendran N. Corrosion behaviour and biocompatibility of nanoporous niobium incorporated titanium oxide coating for orthopaedic applications [J]. Ceram. Int., 2017, 43: 1731
9 Zhang S, Cheng X, Yao Y, et al. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior [J]. Mater. Sci. Eng., 2015, C53: 50
10 Jones M I, McColl I R, Grant D M. Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering [J]. Surf. Coat. Technol., 2000, 132: 143
11 Su C Y, Lu C T, Hsiao W T, et al. Evaluation of the microstructural and photocatalytic properties of aluminum-doped zinc oxide coatings deposited by plasma spraying [J]. Thin Solid Films, 2013, 544: 170
12 Shukla A K, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4 Al-29Nb alloys in simulated human body conditions [J]. Intermetallics, 2005, 13: 631
13 Xu J, Bao X K, Jiang S Y. In vitro corrosion resistance of Ta2N nanocrystalline coating in simulated body fluids [J]. Acta Metall. Sin., 2018, 54: 443
徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究 [J]. 金属学报, 2018, 54: 443
14 Yu Y J, Kim J G, Cho S H, et al. Plasma-polymerized toluene films for corrosion inhibition in microelectronic devices [J]. Surf. Coat. Technol., 2003, 162: 161
15 Mansfeld F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection [J]. Electrochim. Acta, 1990, 35: 1533
16 Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
17 Xu J, Liu L L, Lu X L, et al. Effect of carbon doping on electrochemical behaviour of nanocrystalline Ti5Si3 film in NaCl solution [J]. Electrochem. Commun., 2011, 13: 102
18 Xu J, Cheng J, Jiang S Y, et al. The influence of Ti additions on the mechanical and electrochemical behavior of β-Ta5Si3 nanocrystalline coating [J]. Appl. Surf. Sci., 2017, 419: 901
19 Pan T J, Chen Y, Zhang B, et al. Corrosion behavior of niobium coated 304 stainless steel in acid solution [J]. Appl. Surf. Sci., 2016, 369: 320
20 Hu W, Xu J, Lu X L, et al. Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating [J]. Appl. Surf. Sci., 2016, 368: 177
21 Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem. Interf. Electrochem., 1984, 176: 275
22 Li Y, Zhang J L, Qian X Y, et al. Nanoporous niobium nitride (Nb2N) with enhanced electrocatalytic performance for hydrogen evolution [J]. Appl. Surf. Sci., 2018, 427: 884
23 PremKumar K P, Duraipandy N, Kiran M S, et al. Antibacterial effects, biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications [J]. Appl. Surf. Sci., 2018, 427: 1166
24 Jovic V D, Barsoum M W. Corrosion behavior and passive film characteristics formed on Ti, Ti3SiC2, and Ti4AlN3 in H2SO4 and HCl [J]. J. Electrochem. Soc., 2004, 151: B71
25 Al-Baradi A M, El-Nahass M M, Hassanien A M, et al. Influence of RF sputtering power on structural and optical properties of Nb2O5 thin films [J]. Optik, 2018, 168: 853
26 Ye W. Electrochemical corrosion behavior of 309 stainless steel Nano-crystalline coating in acidic solution [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 25
叶威. 309不锈钢纳米涂层在酸性溶液中的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2008, 28: 25
27 Li D G, Wang J D, Chen D R. Influence of potentiostatic aging, temperature and pH on the diffusivity of a point defect in the passive film on Nb in an HCl solution [J]. Electrochim. Acta, 2012, 60: 134
28 Di Quarto F, Piazza S, Sunseri C. Amorphous semiconductor-electrolyte junction. Impedance study on the a-Nb2O5-electrolyte junction [J]. Electrochim. Acta, 1990, 35: 99
29 Ries L A S, Da Cunha Belo M, Ferreira M G S, et al. Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution [J]. Corros. Sci., 2008, 50: 676
30 Sikora E, Sikora J, Macdonald D D. A new method for estimating the diffusivities of vacancies in passive films [J]. Electrochim. Acta, 1996, 41: 783
31 Kong D S, Wu J X. An electrochemical study on the anodic oxygen evolution on oxide film covered titanium [J]. J. Electrochem. Soc., 2008, 155: C32
[1] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[4] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[5] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[6] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[7] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[8] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[9] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[10] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[11] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[12] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[13] GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[14] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[15] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[1] Wei Ke. RESEARCH AND DEVELOPMENT FOR CORROSION DAMAGE CASE ANALYSIS AND EXPERT SYSTEM[J]. J Chin Soc Corr Pro, 2004, 24(2): 105 -107 .
[2] Xin Ren; Huaiyu Yang; Fuhui Wang; Zhu Zhao; Yawei Shao. HIGH TEMPERATURE CORROSION BEHAVIOR OF A3 STEELIN V2O5+Na2SO4 SALTS AT 700 ℃[J]. J Chin Soc Corr Pro, 2002, 22(2): 92 -94 .
[3] . OXIDATION BEHAVIOUR OF Pt-MODIFIED ALUMINIDE COATINGS ON IN738 AT 1100℃[J]. J Chin Soc Corr Pro, 2001, 21(1): 54 -58 .