Please wait a minute...
J Chin Soc Corr Pro  2001, Vol. 21 Issue (5): 265-272     DOI:
Research Report Current Issue | Archive | Adv Search |
RESEARCH OF PITTING SUSCEPTIBILITY IN LOWCARBON STEELS AND MECHANISM OF PITTING INITIATION
;;
武汉市海军工程大学基础部
Download:  PDF(350KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Four low carbon steels with different metallurgy factors have been se lected.Their susceptibility to pitting has been compared by means of polariza tion test.Characteristic of pitting initiated by different inclusions has been studied with the EPMA and the dissolving production has been confirmed with the MCT during pitting initiation.The results showed that the susceptibility of boi ling steel to pitting initiation was markedly lower than those of killed steel , the pitting susceptibility of killed steel treated by rare earth was between bo iling steel and common killed steel.The inclusions were the sites most suscepti ble to pitting initiation.Passivation film of boundary between steel matrix and inclusions was the weakest and the early pitting corrosion was caused from here .The difference of susceptibility to pitting initiated by homogeneous inclusion s was large when these inclusions existed in different kind of steels.The diffe rence of susceptibility to pitting initiated by different inclusions in the one steel was small and the sulfide inclusions had bigger ability of initiating pitt ing than other types of inclusions did.
Key words:  steel      inclusion      pitting      
Received:  16 August 2000     
ZTFLH:  TG172.5  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. RESEARCH OF PITTING SUSCEPTIBILITY IN LOWCARBON STEELS AND MECHANISM OF PITTING INITIATION. J Chin Soc Corr Pro, 2001, 21(5): 265-272 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2001/V21/I5/265

[1]WranglenG .ActiveSulphideandPittingCorrosionofCarbonSteels[M ].Williamburgva:InternationalCongressonLocalizedCorrosion,USA ,1971,(12):6~10
[2]Szklarska-SmialowakaZ .Theeffectofinclusionsonthesusceptibilityofsteelstopitting,StressCorrosionCrackingandHy drogenEmbrittlement[J],WerkstoffeundKorrosion,1981,(32):478~485
[3]EklundG .Ontheinitiationofcorrosiononcarbonsteels[J].ScandinavianJournalofMetallurgy,1976,(1):331~336
[4]ChenXuequn,KongXiaodong,ChangWanshun.Mechanismofpittingbythesulfideinclusionsinthecarbonsteel[J].JournaloftheNavalAcademyofEngineering,1997,(1):1~9(陈学群,孔小东,常万顺.低碳钢中硫化物夹杂诱发点蚀的机理[J].海军工程学院学报,1997,(1):1~9)
[5]LinChangjian,XieZhaoxiong,TianZhaowu.Earlyprocessofpittinginthestainlesssteel[J].CorrosionScienceandProtectionTechnology,1997,9(4):259~263(林昌健,谢兆雄,田昭武.不锈钢点腐蚀的早期过程[J].腐蚀科学与防护技术,1997,9(4):259)
[6]CompilingGroupofChemistryDepartmentofGansuNormalUniversity.ConciseChemistryHandbood[M ].Lanzhou:GansuPeoplePublishingHouse,1980(甘肃师范大学化学系编写组.简明化学手册[M].兰州:甘肃人民出版社,1980)
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[6] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[7] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[8] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[9] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[10] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[11] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[12] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[13] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[14] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[15] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
No Suggested Reading articles found!