Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 523-528    DOI: 10.11902/1005.4537.2019.207
Current Issue | Archive | Adv Search |
Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB
MA Mingwei1, ZHAO Zhihao2, JING Siwen1, YU Wenfeng1, GU Yien1, WANG Xu1(), WU Ming2
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(10850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of sulfate-reducing bacteria (SRB) and applied stress on the corrosion behavior of 17-4 PH stainless steel was studied in a simulated marine solution inoculated with SRB. The stress-strain curves and fracture morphology were analyzed to acquire the differences in corrosion behavior induced by sterile solution and SRB inoculum solution respectively. The results showed that the ISCC values were increased by 5.2%, 9.3%, and 4.4% in the SRB-inoculated solution for the steels subjected to single stage aging, double stage aging and tempering treatments respectively. The corrosion product of FeS enhances the anodic dissolution process and accelerates the corrosion reaction. Double stage aging treated steels are more sensitive to SRB due to the microstructure of coarse martensite, facilitating the entry and accumulation of hydrogen. The stress corrosion cracking (SCC) mechanism for single stage aging and tempering treated steels may be ascribed to the anodic dissolution (AD), while the double-stage aging treated steel may be due to the hydrogen induced cracking (HIC).

Key words:  17-4 PH stainless steel      heat treatment      strain      SRB      stress corrosion cracking     
Received:  11 November 2019     
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51574147)
Corresponding Authors:  WANG Xu     E-mail:  wangxu@lnpu.edu.cn

Cite this article: 

MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 523-528.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.207     OR     https://www.jcscp.org/EN/Y2020/V40/I6/523

ValueCMnSiSPCrNiCuNbFe
Nominal≤0.07≤1.00≤1.00≤0.03≤0.0315.0~17.53.00~5.003.00~5.000.15~0.45Bal.
Measured0.040.280.510.0210.02716.04.153.400.30Bal.
Table 1  Chemical composition of 17-4 PH stainless steel (mass fraction / %)
Fig.1  Dimensions of test specimen (a) and schematic diagram of test vessel for SCC experiment (b)
Fig.2  Microstructures of 17-4 PH stainless steel treated by different processes of single-aging (a), double-aging (b) and quenching and tempering (c)
Fig.3  Stress-strain curves of samples A (a), B (b) and C (c) in different conditions and their reductions of area (d)
Table 2  ISCC values of samples with different heat treatments in sterile and SRB-inoculated solutions
Fig.4  Fracture morphologies of 17-4 PH stainless steel samples with heat treatments of single-stage aging (a, d), double-stage aging (b, e) and quenching and tempering (c, f) in sterile solution (a~c) and SRB-inoculated solution (d~f)
Fig.5  Lateral fracture morphologies of 17-4 PH stainless steel samples with different thermal treatments in SRB-inoculated solution: (a) single-stage aging, (b) double-stage aging, (c) quenching and tempering
[1] Song J, Curtin W A. A nanoscale mechanism of hydrogen embrittlement in metals [J]. Acta Mater., 2011, 59(4): 1557
doi: 10.1016/j.actamat.2010.11.019
[2] Xu D, Li Y, Gu T. A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 3067
doi: 10.1007/s11274-012-1116-0 pmid: 22806745
[3] Li F S, An M Z, Liu G Z, et al. Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel [J]. Acta Metall. Sin., 2009, 45: 536
(李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌对18-8不锈钢点蚀行为的影响 [J]. 金属学报, 2009, 45: 536)
[4] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[5] Domżalicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2015, 58: 413
[6] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953
[7] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
doi: 10.1016/j.ibiod.2014.03.014
[8] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
pmid: 25023048
[9] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
pmid: 27071053
[10] Zhao Z H, Wang X, Wu M. Effect of heat treatment on corrosion resistance of 05Cr17Ni4Cu4Nb steel [J]. Heat Treat. Met., 2018, 43(12): 109
(赵志浩, 王旭, 吴明. 热处理对05Cr17Ni4Cu4Nb钢耐蚀性的影响 [J]. 金属热处理, 2018, 43(12): 109)
[11] Wu M, Zhao Z H, Wang X, et al. Synergistic effects of a sulfate-reducing bacteria and an applied stress on the corrosion behavior of 17-4 PH stainless steel after different heat treatments[J]. Int. J. Electrochem. Sci., 2020, 15: 208
[12] Liu R L, Yan M F, Qiao Y J, et al. Heat treatment and tensile properties of martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(2): 87
(刘瑞良, 闫牧夫, 乔英杰等. 马氏体不锈钢热处理及其拉伸性能 [J]. 金属热处理, 2013, 38(2): 87)
[13] Ziewiec A, Zielińska-Lipiec A, Tasak E. Microstructure of welded joints of x5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment [J]. Arch. Metall. Mater., 2014, 59(3): 965
[14] Deng D W, Chen R, Tian X, et al. Influence of heat treatment on microstructure and properties of 17-4PH martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(4): 32
(邓德伟, 陈蕊, 田鑫等. 热处理对17-4PH马氏体不锈钢显微组织及性能的影响 [J]. 金属热处理, 2013, 38(4): 32)
[15] Delafosse D, Magnin T. Hydrogen induced plasticity in stress corrosion cracking of engineering systems [J]. Eng. Fract. Mech., 2001, 68: 693
[16] Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22
[17] Torres-Islas A, González-Rodríguez J G. Effect of electrochemical potential and solution concentration on the SCC behaviour of X-70 pipeline steel in NaHCO3 [J]. Int. J. Electrochem. Sci., 2009, 4: 640
[18] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution [J]. Corros. Sci., 2008, 50: 3116
[19] Wang D, Xie F, Wu M, et al. Stress corrosion cracking behavior of X80 pipeline steel in acid soil environment with SRB [J]. Metall. Mater. Trans., 2017, 48A: 2999
[20] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169
[21] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
doi: 10.1016/j.ibiod.2014.05.007
[22] Casanova T, Crousier J. The influence of an oxide layer on hydrogen permeation through steel [J]. Corros. Sci., 1996, 38: 1535
doi: 10.1016/0010-938X(96)00045-5
[23] Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[8] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] Shuzhong KE, Jing LIU, Feng HUANG, Zhen WANG, Yunjie BI. Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[11] Fang GUAN, Xiaofan ZHAI, Jizhou DUAN, Baorong HOU. Progress on Influence of Cathodic Polarization on Sulfate-reducing Bacteria Induced Corrosion[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[12] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[13] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[14] Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[15] Xuejun CUI,Xin DAI,Bingyu ZHENG,Yingjun ZHANG. Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
No Suggested Reading articles found!