Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (5): 469-473    DOI: 10.11902/1005.4537.2019.282
Current Issue | Archive | Adv Search |
Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment
AI Fangfang1,2(), CHEN Yiqing1,2, ZHONG Bin1,2, LI Lin1,2, GAO Peng1,2, SHAN Hongyu1,2, SU Xiandong1,2
1 State Key Laboratory of Material for Marine Equipment and Application, Anshan 114009, China
2 Ansteel Iron & Research Institute, Anshan 114009, China
Download:  HTML  PDF(7756KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of second phases and alloying elements on stress corrosion cracking (SCC) behavior of oil well steel T95 in sour H2S environments was investigated by means of electrochemical polarization measurement, constant tensile test, optical microscope and transmission microscope. Results showed that solutions of pH=2.3 and pH=2.8 were SCC sensitive environment to T95. With the decreasing pH, cracking time of the prestressed rings decreased, namely, the SCC sensitivity of T95 increased. With the decrease of pH, the IH+ (input current from the environment) increased, while the cathode reaction was enhanced, as a consequence, the hydrogen induced cracking (HIC) occurred. Meanwhile, the aggregation of H+ on the crack tip might promote the crack expansion, accordingly, the anodic dissolution was enhanced. The crack propagation was controlled simultaneously by anodic dissolution (AD) and hydrogen embrittlement (HE) in the solutions of pH=2.3 and pH=2.8.

Key words:  acid media      stress corrosion      constant load tensile      H2S      crack propagation      oil well pipe steel     
Received:  31 December 2019     
ZTFLH:  TG172  
Corresponding Authors:  AI Fangfang     E-mail:  ansteelaff@163.com

Cite this article: 

AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 469-473.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.282     OR     https://www.jcscp.org/EN/Y2020/V40/I5/469

Fig.1  Metallurgical structure of T95 oil well pipe steel
Fig.2  TEM images and precipitates of T95 steel: (a) intra crystalline, (b) inter crystalline
Fig.3  Image of cementite distribution (a) and EDS analysis (b)
Fig.4  Polarization curves of T95 in three pH solutions
Fig.5  Results of stress ring test of T95 steel
Fig.6  SEM image of T95 steel fractured sample in air
Fig.7  SEM images of T95 samples fractured by stress ring in solution of pH=2.8 (a) and pH=2.3 (b)
[1] Zhao Y N. Stress corrosion experimental research of 304 austenitic stainless steel in H2S+Cl-+CO2+H2O complex medium condition [D]. Hangzhou: Zhejiang University of Technology, 2016
(赵亚楠. 304奥氏体不锈钢在H2S+Cl-+CO2+H2O复杂介质环境下的应力腐蚀试验研究 [D]. 杭州: 浙江工业大学, 2016)
[2] Li M, Li X G, Chen H. A review on corrosion behavior and mechanism of metals in wet H2S [J]. Corros. Sci. Prot. Technol., 2005, 17: 107
(李明, 李晓刚, 陈华. 在湿H2S环境中金属腐蚀行为和机理研究概述 [J]. 腐蚀科学与防护技术, 2005, 17: 107)
[3] Zheng H J, Zhang K D. Stress effect in SCC system of 16MnR material in saturated H2S solution [J]. J. Zhejiang Univ. Technol., 2001, 29: 360
(郑华均, 张康达. 应力在16MnR钢饱和硫化氢溶液应力腐蚀体系中的作用 [J]. 浙江工业大学学报, 2001, 29: 360)
[4] Liu Z Y, Zhai G L, Du C W, et al. Stress corrosion behavior of X70 pipeline steel in simulated solution of acid soil [J]. Acta Metall. Sin., 2008, 44: 209
(刘智勇, 翟国丽, 杜翠薇等. X70钢在酸性土壤模拟溶液中的应力腐蚀行为 [J]. 金属学报, 2008, 44: 209)
[5] Yan M C, Sun C, Xu J, et al. Stress corrosion of pipeline steel under occluded coating disbondment in a red soil environment [J]. Corros. Sci., 2015, 93: 27
[6] Bai W F. Study on the influencing factors on wet H2S stress corrosion cracking test of oil tube [D]. Shanghai: Shanghai Jiao Tong University, 2010
(柏文峰. 油井管在湿硫化氢环境下应力腐蚀试验若干影响因素研究 [D]. 上海: 上海交通大学, 2010)
[7] Liu Z Y, Li X G, Du C W, et al. Experimental Evaluation Method of Corrosion Behavior and Mechanism for Typical Materials in Oil/Gas-Field Environments [M]. Beijing: Science Press, 2016: 110
(刘智勇, 李晓刚, 杜翠薇等. 典型材料油气田腐蚀实验评价方法 [M]. 北京: 科学出版社, 2016: 110)
[8] Gutzeit J. Corrosion of steel by sulphides and cyanides in refinery condensate water [J]. Mater. Prot., 1968, 12: 17
[9] Zhao M C, Shan Y Y, Li Y H, et al. Effect of microstructure on sulfide stress corrosion cracking of pipeline steels [J]. Acta Metall. Sin., 2001, 37: 1087
(赵明纯, 单以银, 李玉海等. 显微组织对管线钢硫化物应力腐蚀开裂的影响 [J]. 金属学报, 2001, 37: 1087)
[10] Lu Z M. Research on stress corrosion cracking of typical pressure vessel steels in wet hydrogen sulfide service [D]. Hangzhou: Zhejiang University, 2003
(卢志明. 典型压力容器用钢在湿硫化氢环境中的应力腐蚀开裂研究 [D]. 杭州: 浙江大学, 2003)
[11] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2 environment [J]. J. Mater. Sci., 2009, 44: 4228
[12] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
[13] Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
[14] He X, Cui YH, Li G B, et al. Crack growth driving force at tip of stress corrosion cracking in nuclear structural materials at initial stage [J]. Rare Met. Mater. Eng., 2018, 47: 2365
[15] Qu X J. Stress corrosion cracking behavior research of 316L stainless steel in saturated CO2+Cl-+H2S [D]. Qingdao: China University of Petroleum (East China), 2016
(曲效建. 316L不锈钢在饱和CO2+Cl-+H2S介质环境中的应力腐蚀行为研究 [D]. 青岛: 中国石油大学 (华东), 2016)
[16] Liu Z Y, Li X G, Cheng Y F. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization [J]. Corros. Sci., 2012, 55: 54
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[4] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[8] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[11] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[14] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[15] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
No Suggested Reading articles found!